Responsive image
博碩士論文 etd-0714104-111805 詳細資訊
Title page for etd-0714104-111805
論文名稱
Title
奈米磨粒在工件上滾/滑動所衍生之加工現象:分子動力學分析
A study on induced phenomena from rolling/sliding motion of nano-particle on work surface:molecular dynamics analysis
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
94
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-06-25
繳交日期
Date of Submission
2004-07-14
關鍵字
Keywords
分子動力學、拋光
molecular dynamic, polish
統計
Statistics
本論文已被瀏覽 5628 次,被下載 1111
The thesis/dissertation has been browsed 5628 times, has been downloaded 1111 times.
中文摘要
本論文旨在利用分子動力學來探討在拋光過程中磨粒在工件表面上滾動或滑動對工件表面的加工行為所造成的影響。對於除了運動方式的改變所造成的影響之外,另外還有探討下壓深度、磨粒的形狀以及磨粒與工件之間的吸附強度的改變,對於磨粒運動過後的移除量、變質層的數目以及磨粒運動過後所衍生的粗度的所產生的影響。

由模擬中發現,磨粒以滾動運動會比滑動運動來的容易對工件表面的原子造成移除。就滾動運動而言,對工件表面原子會造成移除量的關鍵是磨粒與工件之間的吸附強度必須夠大。就滑動而言,吸附強度不是影響移除量的唯一因素,在滑動過程中欲造成原子的移除,除了吸附強度夠大之外,其磨粒與工件之接觸角也必須夠小才行。

工件表面下的變質層原子在圓球狀磨粒作用下,不管滾動或滑動都會隨著吸附強度增加而增加其數量,另外接觸角的不同也會影響變質層原子的數目。而磨粒衍生的粗度,在滾動過程中吸附強度較小會與吸附強度有關,其他狀況下其趨勢趨於不明顯。
Abstract
The induced phenomena caused by rolling or sliding action of a nano-particle on the work were considered in this study. The analysis was done by the molecular dynamics method.The effects on the removals of work, the roughness induced by nano-particle and the thickness of the damage layer caused by the depth of indentation, the shape of particle and the adhesive strength btween the particle and the work will also be discussed.

The result shows that the particle in rolling process removed atoms easier than in sliding process. The removals of work in the process of rolling depend on the adhesive strength between the nano-particle and the work. More powerful of the adhesive strength will increase the amount of removal. But, the adhesive strength was not the only factor in the process of sliding. The rake angle between the nano-particle and the work was the important factor, too. In order to remove the atoms during sliding process, not only the adhesive strength must be strong enough but also the rake angle must be small enough.

The increase of the strength between the particle in the shape of ball and the work will cause more amorphous atoms in both rolling and sliding process. The thickness of the damage layer of the work surface was also affected by the rake angle. But the roughness was little affected by the adhesive strength between the nano-particle and the work.
目次 Table of Contents
謝誌…………………………………………………………………Ⅰ
目錄…………………………………………………………………Ⅱ
圖索引………………………………………………………………Ⅳ
表索引………………………………………………………………Ⅶ
中文摘要……………………………………………………………Ⅷ
英文摘要……………………………………………………………Ⅸ
第一章 緒論
1.1前言…………………………………………………………1
1.2拋光及其所遭遇困難 ……………………………………2
1.3研究動機……………..……………………………………4
1.4研究方法……………………………………………………4
1.5相關文獻……………………………………………………6
1.6內容簡介……………………………………………………8
第二章 分子動力學簡介
2.1分子動力學的基本原理……………………………………9
2.2位勢能函數介紹……………………………………………10
2.3運動方程式…………………………………………………13
2.4邊界條件……………………………………………………14
2.5 Verlet List及Link Cell法 ……………………………15
2.6平行分子動力學……………………………………………17
第三章 模式及程式的建立
3.1模擬所遇到的困難…………………………………………18
3.2解決的方法…………………………………………………19
3.2.1計算力的簡化 ………………………………………19
3.2.2邊界移動法 …………………………………………21
3.2.3分析的指標 …………………………………………23
3.3程式的規劃…………………………………………………27
第四章 模擬的規畫與結果趨勢
4.1模擬的規劃…………………………………………………31
4.2 模擬結果與趨勢 …………………………………………35
第五章 討論
5.1模擬結果的討論……………………………………………39
5.2 待改進之處 ………………………………………………43
第六章 結論 ………………………………………………………45
參考文獻 References
【1】Y. T. Su, S. Y. Wang, and J. S. Hsiau, “On machining rate of hydrodynamic polishing process,” Wear, Vol.188, pp.77-87, 1995.
【2】 Y. T. Su, C. C Horng, J. Y. Sheen and J. S. Hsiau, “A Process planning strategy for removing non-axially symmetric form error by hydrodynamic polishing process,” Int. Mach. Tools Manufact., Vol.36, No. 2, pp. 1227-1245, 1996.
【3】Y. T. Su, C. C Horng, S. Y. Wang and J. S. H. Jang, “Ultra-precision machining by hydrodynamic polishing process,” Int. Mach. Tools Manufact., Vol.36, No. 2, pp.275-291, 1996.
【4】Y. T. Su and J. Y. Sheen, “A process planning strategy for removing arbitrary and axially symmetric profile by a polishing process,” Int. Mach. Tools Manufact., Vol.39, pp.187-207, 1999.
【5】 劉松河, 應用液動壓拋光法於工件表面粗度移除效率之實驗分析與探討, 國立中山大學碩士論文,2000.
【6】 陳勇維, 應用液動壓拋光法於工件表面終極粗度之初步探討, 國立中山大學碩士論文,2001.
【7】 蔡政旻, 不同工件表面波長對拋光法於表面粗度之改善極限的探討,國立中山大學碩士論文,2002.
【8】 K. Kendall, “Rolling friction and adhesion between smooth solids,” Wear, Vol.33, p.351-358, 1975.
【9】 K. Kendall, “The effect of shrinkage on interfacial cracking in a bonded laminate,” J. Phys. D., Vol.8, p.1722-1732, 1975.
【10】 K. Kendall, “Kinetics of contact between smooth solids,” J. Adhesion, Vol.7, p.52-72, 1974.
【11】 K. Kendall, N. Alford and J. D. Birchall, “A new method for measuring the surface energy of solids,” Nature, Vol.325, p.194-295, 1987.
【12】 K. Kendall, “Adhesion: molecules and mechanics,” Science, Vol.263, p.1720-1725, 1994.
【13】 許政欽, 奈米磨粒在工件上滾動索引發現象之探討:分子動力法分析,國立中山大學碩士論文,2003.
【14】 洪篤傑, 液動壓拋光法刀具磨耗研究,國立中山大學博士論文,2001.
【15】 L.C. Zhang and Hiroaki Tanaka,“ On the mechanics and Physics in the nano-indentation of silicon monocrystals,” JSME International J., Series A, Vol. 42, No. 4, 1999.
【16】B. Lin, S. Y. Yu and S. X. Wang,” An experimental study on molecular dynamics simulation in nanometer grinding,” Journal of Materials Processing Technology, Vol.138, Pages 484-488, 2003
【17】N. Chandrasekaran, A. Nori Khajavi, L. M. Raff, and R. Komanduri,“ A new method for molecular dynamics simulation of nanometric cutting, ”Phil. Mag. B, Vol. 77, pp.7-26, 1998.
【18】R. Komanduri, N. Chandrasekaran and L. M. Raff ,” Effect of tool geometry in nanometric cutting: a molecular dynamics simulation approach ,” Wear, Vol.219, p.84-97,1998
【19】X. S. Han, B. Lin, S. Y. Yu and S. X. Wang, “ Investigation of tool geometry in nanometric cutting by molecular dynamics simulation,” Journal of Materials Processing Technology, Vol. 129, p.105-108, 2002
【20】Charles H. Henager Jr., and Richard G. Hoagland,” Dislocation core fields and forces in FCC metals”, Scripta Materialia, Vol.50, p.1091-1095,2004
【21】David Rodney,” Molecular dynamics simulation of screw dislocations interacting with interstitial frank loops in a model FCC crystal,” Acta Materialia, Vol.52, p.607-614,2004
【22】M. Li, W. Y. Chu, K. W. Gao and L. J. Qiao,” Molecular dynamics simulation of healing of an ellipsoid crack in copper under compressive stress” Materials Letters, Vol.58, p.543-546, 2004
【23】 D. Cheong, L. C. Zhang,“ Molecular dynamics simulation of phase transformation in silicon monocrystals due to nano-indentation, ”Nanotech., Vol. 11, pp. 173-180, 2000.
【24】 Yasushi Shibuta and Shigeo Maruyama,” Molecular dynamics simulation of formation process of single-walled carbon nanotubes by CCVD method,” Chemical Physics Letters, Vol.382, p.381-386,2003
【25】 H. Kasem
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code