Responsive image
博碩士論文 etd-0714105-084613 詳細資訊
Title page for etd-0714105-084613
論文名稱
Title
方型微渠道內之電滲現象研究
Electroosmotic Flows in a Square Microchannel
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
122
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-07-06
繳交日期
Date of Submission
2005-07-14
關鍵字
Keywords
電滲、電泳、微渠道、焦耳熱效應
Joule heating, Electroosmotic, Microchannel, Electrophortic
統計
Statistics
本論文已被瀏覽 5643 次,被下載 2599
The thesis/dissertation has been browsed 5643 times, has been downloaded 2599 times.
中文摘要
本實驗採用微質點影像測速儀(MPIV),成功量得在PDMS微渠道內螢光質點分別在1x TAE、1x TBE、10mM NaCl、10mM Borate電解液中的電泳速度,再以電滲驅動的方式,針對200 µm x 200 µm x 40 mm的方形微渠道,分別將電場強度從2.5到25 kV/m,進行全域流場的速度量測。經由量測後之分析,得到電場強度與電滲速度之線性和非線性的關係,透過線性電滲速度可求得四種電解液各自的電滲移動率,並將此結果與先前之文獻相互比較,而非線性電滲速度主要是由於焦耳熱效應所造成,在此也透過溫度模擬的方式將所得之結果與實驗結果做比較。最後,定義出影響電滲流動的參數,並把這些參數關聯為一方程式,而此關聯式之誤差在1%以內。
Abstract
Experiments were performed using a microparticle image velocimetry (MPIV) for full field velocity distributions of electroosmotically driven flows in a 40 mm long microchannel with a square cross section of 200 µm × 200 µm. Electroosmotic flow bulk fluid velocity measurements were made in a range of streamwise electric field strengths from 5 to 25 kV/m. A series of seed particle calibration tests can be made in a 200 µm x 200 µm x 24000 µm untreated PDMS channel incorporating MPIV to determine the electrophoretic mobilities in aqueous buffer solutions of 1 TAE, 1 TBE, 10 mM NaCl, and 10 mM borate, respectively. A linear/nonlinear (due to Joule heating) flow rate increase with applied field was obtained and compared with those of previous studies. A parametric study, with extensive measurements was performed with different electric field strength and buffer solution concentration under a constant zeta potential at wall for each buffer. The characteristics of electroosmotic flow in square microchannels were thus investigated. Finally, a composite correlation of the relevant parameters was developed within accuracy for 99% of the experimental data.
目次 Table of Contents
目錄............................................................................................................ i
表目錄...................................................................................................... iv
圖目錄....................................................................................................... v
符號說明................................................................................................ viii
中文摘要................................................................................................... x
英文摘要.................................................................................................. xi


第一章 緒論......................................................................................... 1
1-1 前言.......................................................................................... 1
1-2 微流體概論.............................................................................. 2
1-3 液體微觀流動.......................................................................... 3
1-4 電雙層的形成.......................................................................... 6
1-5 電滲流動機制.......................................................................... 7
1-6 電湧分離機制.......................................................................... 8
1-7 研究背景與目的.................................................................... 10
1-8 文獻回顧................................................................................ 11

第二章 理論分析............................................................................... 17
2-1 電雙層之電位分布................................................................ 17
2-2 電雙層之動量方程式............................................................ 20
2-3 參數分析................................................................................ 23

第三章 實驗設備系統....................................................................... 25
3-1 Micro-PIV系統...................................................................... 25
3-2 製程設備................................................................................ 26
3-3 量測周邊設備........................................................................ 29

第四章 實驗方法及步驟................................................................... 41
4-1 微渠道製程............................................................................ 41
4-1-1 微渠道製作.................................................................... 41
4-1-2 電極製作........................................................................ 43
4-1-3 微渠道封裝.................................................................... 43
4-2 藥品配製................................................................................ 44
4-3 流動環路................................................................................ 44
4-4 MPIV量測系統建立............................................................. 45
4-5 分析方法................................................................................ 46
4-6 實驗範圍................................................................................ 47

第五章 誤差分析............................................................................... 56

第六章 結果與討論........................................................................... 60
6-1 流場觀測................................................................................ 60
6-2 速度向量和流線.................................................................... 60
6-3 速度曲線................................................................................ 61
6-4 速度分析................................................................................ 62
6-5 關係式建立............................................................................ 65

第七章 結論與建議........................................................................... 84
7-1 結論........................................................................................ 84
7-2 建議與改進............................................................................ 85

參考文獻................................................................................................. 87
附錄A...................................................................................................... 93
附錄B...................................................................................................... 98
參考文獻 References
1. A. Manz, N. Graber, and H. M. Widmer, “Miniaturized Total Chemical Analysis Systems : A Novel Concept for Chemical Sensing,” Sensors and Actuators B : Chemical, Vol. b1, 1990, pp. 244-248.

2. H. H. Bau, “Transport Processes Associated with Micro-Devices,” Thermal Science and Engineering, Vol. 2, 1994, pp. 172-178.

3. G. M. Mala, D. Li, and J. D. Dale, “Heat Transfer and Fluid Flow Microchannels,” Int. J. Heat Mass Transfer, Vol. 40, 1996, pp. 3079-3088.

4. C. Yang, D. Li, and J. H. Masliyah, “Modeling Forced Liquid Convection in Rectangular Microchannels with Electrokinetic Effects,” Int. J. Heat Mass Transfer, Vol. 41, 1998, pp. 4229-4249.

5. J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J Adrian, “A Particle Image Velocimetry System for Microfluidics,” Experiments in Fluids, Vol. 25, 1998, pp. 316-319.

6. D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid Prototyping of Microfluidic Systems in Poly(dimethysiloxane),” Anal. Chem., Vol. 70, 1998, pp. 4974-4984.

7. D. Sinton, C. E. Canseco, L. Ren, and D. Li, “Direct and Indirect Electroosmotic Flow Velocity Measurements in Microchannels,” J. Colloid Interface Sci., Vol. 254, 2002, pp. 184-189.

8. S. Devasenathipathy, and J. Santiago, “Particle Tracking Techniques for Electrokinetic Microchannel Flows,” Anal. Chem., Vol. 74, 2002, pp. 3704-3713.

9. D. Maynes, and B. W. Webb, “Fully-Developed Thermal Transport in Combined Pressure and Electro-Osmotically Driven Flow in Microchannels,” ASME J. Heat Transfer, Vol. 88, 2003, pp. 889-895.

10. S.-S. Hsieh, C.-Y. Lin, C.-F. Huang, and H.-H. Tsai, “Liquid Flow in a Microchannel,” Journal of Micromechanics and Microengineering, Vol. 14, 2004, pp. 436-445.

11. K. Horicuchi, and P. Dutta, “Joule Heating Effects in Electroosmotically Driven Microchannel Flows,” Int. J. Heat Mass Transfer, Vol. 47, 2004, pp. 3085-3095.

12. S. Arulanandam, and D. Li, “Liquid Transport in Rectangular Microchannels by Electroosmotic Pumping,” Colloids and Surfaces A, Vol. 161, 2000, pp. 89-102.

13. C. Yang, and D. Li, “Analysis of Electrokinetic Effects on the Liquid Flow in Rectangular Microchannels,” Colloids and Surfaces A, Vol. 143, 1998, pp. 339-353.

14. S. T. Kline, and F. A. Mcclintock, “Describing Uncertainties in Single-Sample Experiments,” Mechanical Engineering, Vol. 75, 1953, pp. 3-8.

15. R. J. Moffat, “Contributions to the Theory of Single-Sample Uncertainty Analysis,” Journal of Fluids Engineering, Vol. 104, 1982, pp. 250-260.

16. D. Sinton, and D. Li, “Electroosmotic Velocity Profiles in Microchannels,” Colloids and Surfaces A, Vol. 222, 2003, pp. 273-283.

17. R. J. Hunter, Zeta Potential in Colloid Science, Principals and Applications, Academic Press, New York, 1981.

18. D. Maynes, and B. W. Webb, “Fully Developed Electro-Osmotic Heat Transfer in Microchannels,” Int. J. Heat Mass Transfer, Vol. 46, 2003, pp. 1359-1369.

19. L. Ren, C. Escobedo, and D. Li, “Electroosmotic Flow in a Microcapillary with One Solution Displacing Another Solution,” J. Colloid Interface Sci., Vol. 242, 2001, pp. 264-271.

20. J. L. Pittman, C. S. Henry, and S. D. Gilman, “Experimental Studies of Electroosmotic Flow Dynamics in Microfabricated Devices during Current Monitoring Experiments,” Anal. Chem., Vol. 75, 2003, pp. 361-370.

21. D. Ross, T. J. Johnson, and L. E. Locascio, “Imaging of Electroosmotic Flow in Plastic Microchannels,” Anal. Chem., Vol. 73, 2001, pp. 2509-2515.

22. C. Meinhart, S. Wereley, and J. Santiago, “A PIV Algorithm for Estimation Time-Averaged Velocity Fields,” J. Fluids Eng., Vol. 27, 2000a, pp. 285-289.

23. C. Meinhart, S. Wereley, and M. Gray, “Volume Illumination for Two-Dimensional Particle Image Velocimetry,” Meas. Sci. Technol., Vol. 11, 2000, pp. 809-814.

24. C. D. Meinhart, S. T. Wereley, and J. G. Santiago, “PIV Measurements of a Microchannel Flow,” Experiments in Fluids, Vol. 27, 1999, pp. 414-419.

25. W. Qu, G. M. Mala, and D. Li, “Pressure-Driven Water Flows in Trapezoidal Silicon Microchannels,” Int. J. Heat Mass Transfer, Vol. 43, 2000, pp. 353-364.

26. K. Okamoto, S. Nishio, T. Saga, and T. Kobayashi, “Standard Images for Particle-Image Velocimetry,” Meas. Sci. Technol., Vol. 11, 2000, pp. 685-691.

27. L. Tsuei, and O. Savas, “Treatment of Interfaces in Particle Image Velocimetry,” Experiments in Fluids, Vol. 29, 2000, pp. 203-214.

28. S. T. Wereley, and C. D. Meinhart, “Second-Order Accurate Particle Image Velocimetry,” Experiments in Fluids, Vol. 31, 2001, pp. 258-268.


29. S. W. Stone, C. D. Meinhart, and S. T. Wereley, “A Microfluidic- Based Nanoscope,” Experiments in Fluids, Vol. 33, 2002, pp. 613-619.

30. A. K. Singh, E. B. Cummings, and D. J. Throckmorton, “Fluorescent Liposome Flow Markers for Microscale Particle Image Velocimetry,” Anal. Chem., Vol. 73, 2001, pp. 1057-1061.


31. A. E. Herr, J. I. Molho, J. G. Santiago, M. G.. Mungal, and T. W. Kenny, “Electroosmotic Capillary Flow with Nonuniform Zeta Potential,” Anal. Chem., Vol. 72, 2000, pp. 1053-1057.

32. J. G. Santiago, “Electroosmotic Flows in Microchannels with Finite Inertial and Pressure Forces,” Anal. Chem., Vol. 73, 2001, pp. 2353-2365.

33. C. Yang, T. N. Wong, Y. L. Leu, and J. C. Chai, “Characterization of Electroosmotic Flow in Microchannels,” Int. J. Com. Eng. Sci., Vol. 4, 2003, pp. 273-279.

34. M. H. Oddy, and J. G. Santiago, “A Method Determining Electrophoretic and Electroosmotic Mobility Using AC and DC Electric Field Particle Displacements,” J. Colloid Interface Sci., Vol. 269, 2004, pp. 192-204.

35. A. E. Herr, J. I. Molho, J. G. Santiago, M. G. Mungal, and T. W. Kenny, “Electroosmotic Capillary Flow with Nonuniform Zeta Potential,” Anal. Chem., Vol. 72, 2000, pp. 1053-1057.

36. P. H. Paul, M. G. Garguilo, and D. J. Rakestraw, “Imaging of Pressure- and Electrokinetically Driven Flows through Open Capillaries,” Anal. Chem., Vol. 70, 1998, pp. 2459-24767.

37. M. J. Kim, H. J. Kim, and K. D. Kihm, “Micro-Scale PIV for Electroosmotic Flow Measurement,” Proceedings of PSFVIP-3, March 18-21, 2001, Maui, Hawaii, USA.

38. B. P. Mosier, J. I. Molho, and J. G. Santiago, “Photobleached -Fluirescence Imaging of Microflows,” Experiments in Fluids, Vol. 33, 2002, pp. 545-554.

39. S. K. Sia, and G. M. Whitesides, “Microfluidic Devices Fabricated in Poly(dimethylsiloxane) for Biological Studies,” Electrophoresis, Vol 24, 2003, pp. 3563-3576.

40. X. Xuan, David Sinton, and D. Li, “Thermal End Effects on Electroosmotic Flow in a Capillary,” Int. J. Heat Mass Transfer, Vol. 47, 2004, pp. 3145-3157.

41. T. L. Sounart, and J. C. Baygents, “Electrically-Driven Fluid Motion in Channels with Streamwise Gradients of the Electrical Conductivity,” Colloids and Surfaces A, Vol. 195, 2001, pp. 59-75.

42. M. G. Olsen, and R. J. Adrian, “Brownian Motion and Correlation in Particle Image Velocimetry,” Optics and Laser Technology, Vol. 32, 2000, pp. 621-627.

43. X. Xuan, and D. Li, “Analysis of Electrokinetic Flow in Microfluidic Networks,” Journal of Micromechanics and Microengineering, Vol. 14, 2004, pp. 290-298.

44. X. Xuan, and D. Li, “Joule Heating Effects on Peak Broadening in Capillary Zone Electrophoresis,” Journal of Micromechanics and Microengineering, Vol. 14, 2004, pp. 1171-1180.

45. J. Yang, F. Lu, L. W. Kostiuk, and D. Y. Kwok, “Electrokinetic Microchannel Battery by Means of Electrokinetic and Microfluidic Phenomena,” Journal of Micromechanics and Microengineering, Vol. 13, 2003, pp. 963-970.

46. J. Yang, and D. Y. Kwok, “Effect of Liquid Slip in Electrokinetic Parallel-Plate Microchannel Flow,” J. Colloid Interface Sci., Vol. 260, 2003, pp. 225-233.


47. R.-J. Yang, L.-M. Fu, and Y.-C. Lin, “Electroosmotic Flow in Microchannels,” J. Colloid Interface Sci., Vol. 239, 2001, pp. 98-105.

48. D. Maynes, and B. W. Webb, “The Effect of Viscous Dissipation in Thermally Fully-Developed Electro-Osmotic Heat Transfer in Microchannels,” Int. J. Heat Mass Transfer, Vol. 47, 2004, pp. 987-999.

49. A. Sze, D. Erockson, L. Ren, and D. Li, “Zeta-Potential Measurement Using the Smoluchowski Equation and the Slope of the Current-Time Relationship in Electroosmotic Flow,” J. Colloid Interface Sci., Vol. 261, 2003, pp. 402-410.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code