Responsive image
博碩士論文 etd-0714105-205802 詳細資訊
Title page for etd-0714105-205802
論文名稱
Title
波長轉換用鈮酸鋰晶體光纖之研製
Wavelength Conversion Using Periodically Poled Lithium Niobate Crystal fiber
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
97
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-06-21
繳交日期
Date of Submission
2005-07-14
關鍵字
Keywords
可調藍綠光雷射、相位匹配、鈮酸鋰、波長轉換
Lithium Niobate, wavelength converter, QPM
統計
Statistics
本論文已被瀏覽 5635 次,被下載 0
The thesis/dissertation has been browsed 5635 times, has been downloaded 0 times.
中文摘要
波長轉換器是全光網路中最關鍵的核心技術之一,利用非線性效應所製作的波長轉換器具有高的透明性及多通道的頻域轉換,因此有助於疏通高容量的網路訊號,比傳統光電-電光轉換的傳輸模式具有更大的優勢。

本論文利用鈮酸鋰晶體光纖製作波長轉換元件,利用LHPG法外加電場,在不需製作光罩電極的情形下,製作出週期性極化反轉之鈮酸鋰晶體光纖,針對不同的應用,設計C band通訊波段波長轉換元件之QPM週期為18.9 μm,以及利用串接效應所產生的可調藍/綠光元件之QPM週期為15.45 μm,製作過程中藉由微擺動擺幅比的控制,增加極化反轉的形成,晶體生長長度可達180 mm。針對藍綠光元件所設計之週期性鈮酸鋰晶體光纖,藉由串接倍頻與和頻的效應,經中研院實驗量測,倍頻的轉換效率可達10%,且有40 nm的可調藍/綠光輸出。經由漸變週期之模擬設計,在1530-1630 nm的幫浦波長入射至晶體時,可有3 dB頻寬33 nm的藍/綠光輸出。

在未來除了持續改進區域反轉週期的均勻度外,可藉由模擬程式去設計更寬頻的可調藍/綠光元件的結構,並且進行製作。另一方面製作具波導效果之鈮酸鋰晶體光纖,以實現高效能的準相位匹配之全光波長轉換器。
Abstract
All-optical wavelength conversion will be one of the most key technologies in all-optical network. Wavelngth converter using nonlinear effect can resolve wavelength contentions with its high transparency and subcarrier-multiplexed channels in a complex all-optical network model which is more beneficial than O/E/O method.

Periodically poled LiNbO3 crystal fiber for wavelength conversion is successfully grown by LHPG method with high-electric-field bias. It does not require conducting the metallic electrode to define domain period. The pitch depends on the frequency of applied external electric field and the growth speed. Domain period of 18.9 μm for C-band wavelength converter and domain period of 15.45 μm for tunable blue/green laser are demonstrated in this thesis. Micro-swing during growth is managed to assist poling process. More than 40 nm wavelength range of blue/green laser was generated and 10% internal SHG conversion efficiency was achieved. A simulation shows that maximum tuning range using a graded-period qusai-phase-matching structure can be as large as 33 nm.

With the improvement of uniformity, broadband design for cascaded processes, and waveguide structure, superior performance of periodically poled LiNbO3 crystal fiber can be achieved.
目次 Table of Contents
中文摘要
英文摘要
目錄
圖目錄
表目錄
第一章 緒論

第二章 相位匹配原理與區域反轉機制

2.1雙折射相位匹配
2.2準相位匹配
2.3 鈮酸鋰晶體結構與特性
2.4 區域反轉結構製作方法

第三章 準相位匹配元件之研製

3.1 生長方式與架構
3.1.1 雷射加熱提拉長晶法
3.1.2 長晶電極與外加電場
3.2 電場導致的微擺動
3.2.1 極化反轉與微擺動機制關係
3.2.2 微擺動的控制
3.3 元件製作流程

第四章 數值模擬與準相位匹配元件特性

4.1 C-band 波長轉換元件設計與量測
4.1.1 C-band 波長轉換元件設計
4.1.2 量測結果與討論
4.2 可調藍/綠光元件設計與模擬
4.2.1 可調藍/綠光元件機制
4.2.2 可調藍/綠光元件頻寬拓寬設計模擬
4.2.3量測結果與討論

第五章 結論

5.1 總結
5.2 未來展望

參考文獻
中英對照表
附錄:模擬程式
參考文獻 References
[1] O. Tadanaga, M. Asobe, H. Miyazawa, Y. Nishida, and H.Suzuki, “Efficient 1.55 μm-band quasi-phase-matched ZnO-doped LiNbO3 wavelength converter with high damage resistance,” Electron. Lett., vol. 39, no. 21, 2003.

[2] M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5 μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett., vol. 11, pp. 653-655, 1999.

[3] P. A. Franken, A. E. Hill, C. W. Peter, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett., vol. 7, pp. 118-119, 1961.

[4] J. Knittel and A. H. Kung, “Fourth harmonic generation in a resonant ring cavity,” IEEE J. Quantum Electron., vol. 33, no. 11, pp. 2021-2028, 1997.

[5] J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interaction between light waves in a nonlinear dielectric,” Phys. Rev., vol. 127, pp. 1918-1939, 1962.

[6] K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, “Broadening of the phase-matching bandwidth in quasi-phase-matched second-harmonic generation,” IEEE J. of Quantum Electron., vol. 30, pp. 1596-1604, 1994.

[7] D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett., vol. 22, pp. 1553-1555, 1997.

[8] 卓裕傑, “波長轉換用準相位匹配鈮酸鋰晶體光纖之分析與研製,” 國立中山大學光電工程研究所碩士論文, 2003.

[9] B. T. Matthias and J. P. Remeika, “Ferroelectricity in the illmenite structure” Phys. Rev., vol. 76, p. 1886, 1949.

[10] A. A. Ballman, “Growth of piezoelectric and ferroelectric materials by the Czochralski technique,” J. Am. Ceram. Soc., vol. 48, p. 112, 1965.

[11] R. L. Byer, J. F. Young, and F. S. Feigelson, “Growth of high-quality LiNbO3 crystals from the congruent melt,” J. Appl. Phys., vol. 41, p. 2320, 1970.

[12] S. C. Abrahams, J. M. Reddy, and J. L. Bernstein, “Ferroelectric lithium niobate. 3. Single crystal X-ray diffraction study at 24℃,” J. Phys. Chem. Solids, vol. 27, p. 997, 1966.

[13] S. C. Abrahams, W. C. Hamilton, and J. M. Reddy, “Ferroelectric lithium niobate. 4. Single crystal neutron diffraction study at 24℃,” J. Phys. Chem. Solids, vol. 27, p. 1013, 1966.

[14] S. C. Abrahams, H. J. Levinstein, and J. M. Reddy, “Ferroelectric lithium niobate. 5. Polycrystal X-ray diffraction study between 24℃ and 1200℃,” J. Phys. Chem. Solids, vol. 27, p. 1019, 1966.

[15] H. D. Megaw, “A note on the structure of lithium niobate,” Acta. Cryst. A24, p. 583, 1968.

[16] P. K. Gallagher and H. M. O'Bryan, “Characterization of LiNbO3 by dilatometry and DTA,” J. Am. Ceram. Soc., vol. 68, p. 147, 1985.

[17] L. Arizmendi, “Phontonic applications of lithium niobate crystals,” Phys. Stat. Sol. (a) vol. 201, no. 2, pp. 253-283, 2004.

[18] A. Prokhorov and Y. Kuz’minov, “Physics and chemistry of crystalline lithium niobate,” The Adam Hilger, 1990.

[19] G. E. Peterson and A. Carneval, “93Nb NMR linewidths in nonstoichiometric lithium niobate,” J. Chem. Phys., vol. 56, p. 4848, 1972.

[20] P. Lerner, C. Legras, and J. P. Duman, “Stoechiometric desmonocristaux de metaniobate delithium,” J. Crys. Growth, vol. 3/4, pp. 231,1968.

[21] K. Kitamura, J. K. Yamamoto, N. Iyi, S. Kimura, and T. Hayashi, “Stoichiometric LiNbO3 single crystal growth by double crucible Czochralski method using automatic powder supply system,” J. Crys. Growth, vol. 16, p. 327, 1992.

[22] Y. Furukawa, K. Kitamura, S. Takekawa, K. Niwa, Y. Yajima, N. Iyi, I. Mnushkina, P. Guggenheim, and J. Martin, “The correlation of MgO-doped near-stoichiometric LiNbO3 composition to the defect structure,” J. Crys. Growth, vol. 211, pp. 230-236, 2000.

[23] M. Nakamura, S. Takekawa, K. Terabe, K. Kitamura, T. Usami, K. Nakamura, H. Ito, and Y. Furukawa, “Near-stoichiometric LiTaO3 for bulk quasi-phase-matched devices,” Ferroelectircs, vol. 273, pp. 199-204, 2002.

[24] H. Wang, J. Wen, J. Li, H. Wang, and J. Jing, “Photoinduced hole carriers and enhanced resistance to photorefraction in Mg-doped LiNbO3 crystals,” Appl. Phys. Lett., vol. 57, p. 23, 1990.

[25] K. Niwa, Y. Furukawa, S. Takekawa, K. Kitamura, “Growth and characterization of MgO doped near stoichiometric LiNbO3 crystals as a new nolinear optical material,” J. Crys. Growth, vol. 208, pp. 493-500, 2000.

[26] Y. Tomita, S. Sunarno, and G. Zhang, “Ultraviolet-light-gating two-color photorefractive effect in Mg-doped near-stoichiometric LiNbO3,” J. Opt. Soc. Am. B, vol. 21, no. 4, pp. 753-760, 2004.

[27] D. Xue, K. Betzler, and H. Hesse, “Chemical bond analysis of the seconed order nonlinear optical behavior of Zn-doped lithium niobate,” Opt. Comm., vol. 182, pp.167-173, 2000.

[28] Y. Zhang, Y. H. Xu, M. H. Li, and Y. Q. Zhao, “Growth and properties of Zn doped lithium niobate crystal,” J. Crys. Growth, vol. 233, pp. 537-540, 2001.

[29] J. R. Carruthers, G. E. Peteson, and M. Grasso, “Nonstoichiometry and crystal
growth of lithium niobate,” J. Appl. Phys., vol. 42, pp. 1846-1851, 1971.

[30] C. S. Lau, P. K. Wei, C. W. Su, and W. S. Warry, “Fabrication of magnesium-oxide-induced lithium out-diffusion waveguides,” IEEE Photon. Lett., vol. 4, pp. 872-875 , 1992.

[31] H. Ito, C. Takyu, and H. Inaba, “Fabrication of periodic domain grating in LiNbO3 by electron beam writing for application of nonlinear optical processes,” Electron. Lett., vol. 27, pp. 1221-1222 , 1991.

[32] Y. Y. Zhi, S. N. Zhu, and J. F. Hong, “Domain inversion in LiNbO3 by proton exchange and quick heat treatment,” Appl. Phys. Lett., vol. 65, pp. 558-560,
1994.

[33] D. Feng, N. B. Ming, J. F. Hong, Y. S. Zhu, and Y. N. Wang, “Enhancement of second-harmonic generation in LiNbO3 crystal with periodic laminar
ferroelectric domains,” Appl. Phys. Lett., vol. 37, pp. 607-609, 1980.

[34] I. Camlibel, “Spontaneous polarization measurements in several ferroelectric oxides using pulsed-field method,” J. Appl. Phys., vol. 40, pp. 1690-1693, 1969.

[35] M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodical poled by applying an external field for efficient blue second harmonic generation,” Appl. Phys. Lett., vol. 62, pp.
435-436, 1993.

[36] L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase matched optical parametric oscillators in bulk periodically poled LiNbO3 ,” J. Opt. Soc. Am. B., vol 12, pp. 2102-2116, 1995.

[37] M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, “1.5
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.227.48.131
論文開放下載的時間是 校外不公開

Your IP address is 18.227.48.131
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code