Responsive image
博碩士論文 etd-0714106-161217 詳細資訊
Title page for etd-0714106-161217
論文名稱
Title
水下機械手臂之研究與設計
Design and Research of Underwater Manipulator
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
57
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-06-26
繳交日期
Date of Submission
2006-07-14
關鍵字
Keywords
水密技術、水下機械手臂
Jacobian, robot, manipulator
統計
Statistics
本論文已被瀏覽 5659 次,被下載 1262
The thesis/dissertation has been browsed 5659 times, has been downloaded 1262 times.
中文摘要
本論文主旨在開發一套四軸的水下機械手臂。為了縮小機械手臂與後備系統的體,我們採用直流伺服馬達作為動力源,使機械手臂有平面定位,腕部旋轉及爪部開閉的功能。機械臂使用的電源,可由無人遙控載具的連結電纜來提供,以便減少能量轉換單元的設置,讓機械手臂能裝配在中小型載具上。硬體設計中,最先考慮的是馬達的選用與配置,由於防水與固定結構會因馬達尺寸外型而有很大的改變。且後級馬達的配置設計,有助於前級馬達的負載改善。本論文中,機械臂的臂身與馬達水密箱,皆設計成圓柱狀以方便O型環的設置,而機械手臂中旋轉軸的水密方式,採用油封來作為水密元件。最後夾爪連桿的設計,商確夾爪運動模式後,以運動鏈的設計理論,經過機構合成,設計出六桿、單自由度的連桿組。機械夾爪的定位控制器以Visual Basic為設計平台,Jacobian控制器為主體,比例控制器為輔,設計一套夾爪定位控制程式,控制率為50Hz。並且推導一個以馬達定位角度為變數的函數,作為重力補償,使得手臂在不同定位點,都有相同的定位精度。夾爪定位馬達的驅動是以DA卡與直流伺服驅動器作結合,藉由電壓的改變來決定馬達的轉向與轉速來驅使夾爪定位。而機械夾爪旋轉與開閉,是透過DIO驅動繼電器,改變馬達的電源輸入極性,來決定爪部旋轉方向與開閉狀態。機械手臂定位響應良好,在移動速度為20mm/sec下,定位誤差皆小於±1mm。
Abstract
The goal of this thesis is to design and fabricate a four degrees freedom underwater manipulator for small to midsize remotely operated vehicles. DC servo motors were used to actuate the manipulator joints such that the size and the necessary auxiliary components can be reduced. In terms of hardware design process, the selection of servo motors and their arrangement is the key to the overall performance of the manipulator. The design of any joint, including its location and fixture to the frame, is coupled with that of the neighboring joints such that the design itself is an iterative process. Proper choice of the torque and power of an actuator not only reduces its size but also ease the loading the joints proximal to the base. In this project, the water resistance between stationary and rotary interfaces are achieved by O-ring and mechanical seals respectively. A gripper, synthesized and analyzed with kinematic chain theory, was implemented with a single degree freedom six-bar linkage as the end-effector of the manipulator. Because the robot is designated to operate in underwater environment, the dynamics of the system is relative slow and insignificant. Therefore, the only the linearized kinematics of the manipulator is concerned, and the motion controller is implemented with Jacobian in Visual Basic. Under 50 Hz servo rate, gravity compensation is added for operation in the air, and in the water as well. For the operating speed limited to 20 mm/sec, the overall positioning error is confined to be less than 1 mm for all time.
目次 Table of Contents
第一章 緒論
1.1 前言………………………………………………… 1
1.2 文獻回顧…………………………………………… 1
1.3 論文目的…………………………………………… 2
第二章 機械結構設計
2.1 前言………………………………………………… 3
2.2 傳動系統設計……………………………………… 3
2.3 水密元件的選用…………………………………… 7
2.4 機械手臂臂身設…………………………………… 11
2.5 機械夾爪設計……………………………………… 16
第三章 控制器與介面電路設計
3.1 前言………………………………………………… 22
3.2 運動分析…………………………………………… 22
3.3 Jacobian…………………………………………… 24
3.4 Visual Basic實現Jacobian控制器……………… 26
3.5 重力補償…………………………………………… 30
3.6 馬達驅動介面電路………………………………… 31
第四章 機械手臂定位響應
4.1 前言………………………………………………… 35
4.2 重力補償對機械手臂定位的影響………………… 35
4.3重力補償後機械手臂於空氣中定位響應…………… 37
4.4重力補償後機械手臂於水中定位響應……………… 38
第五章 結論與未來展望
5.1研究成果……………………………………………… 39
5.2討論與改進…………………………………………… 42
5.3未來發展……………………………………………… 44
參考文獻 References
[1]Reynaerts, H. Van Brussel, "A Miniature Manipulator for Integration in a Self-propelling Endoscope," Sensors and Actuators, Vol. 92, pp.343-349, 2001.

[2]Suthakorn, J., Chirikjian, G.S., "Design and Implementation of a New Discretely-Actuated Manipulator," International Symposium onExperimental Robotics (ISER), pp.151-157, Hawaii, December 2000.

[3]Louis L. Whitcomb and Dana R. Yoerger, "A New Distributed Real-Time Control System for the JASON Underwater Robot, "IEEE IROSConference, pp.370-377, Yokohama, Japan,1999.

[4]Robb W. Colbrunn, Gabriel M. Nelson, Roger D. Quinn, "Design and Control of a Robotic Leg with Braided Pneumatic Actuators," Case Western Reserve University, Dept. of Mechanical and Aerospace Engineering, May, 2000.

[5]Jaydeep Roy, Randal Goldberg, and Louis L. Whitcomb, "Structural Design and Analysis of a New Semi-Direct Drive Robot Arm: Theory andExperiment," IEEE International Conference on Robotics and Automation, pp.1517-1524,2000.

[6]A. C. Clegg, M. W. Dunnigan, D. M. Lane, "Self-tuning Position and Force Control of a Hydraulic Manipulator," IEEE Conferendce on Robotics and Automation, pp.3226-3231, 2001.

[7]Werner Kraus Jr. and Brenan J. McCarragher., "Hybrid position/force coordination for dual arm manipulation of flexible materials," IEEE International Conference on Robotics and Automation, pp.202-207, 1997.

[8]Timothy W. McLain and Stephen M. Rock., "Experiments in the hydrodynamic modeling of an underwater manipulator," IEEE In Symposium on Autonomous Underwater Vehicle Technology, pp. 463-469, June 1996.

[9]Timothy W. McLain, Stephen M. Rock, and Michael J. Lee, "Experiments in the coordination of underwater manipulator and vehicle control," Proceedings of Oceans '95 MTS/IEEE, pp.1208-1215, 1995.

[10]Karel Jezernik, Boris Curk, Joze Harnik, "Observer-based sliding mode control of a robotic manipulator," Robotica, vol.12, pp.443-448, 1994.

[11]Asif Sabanovic, Karel Jezernik, Kenzo Wada, "Chattering-free sliding modes in robotic manipulators control," Robotica, vol. 14, pp.17-29, 1996.

[12]T. W. McLain, S. M. Rock, and M. J. Lee., "Experiments in the coordinated control of an underwater arm/vehicle system, " Journal of Autonomous Robots, 3, pp.213-232, 1996.

[13]Giorgio Bartolini, Mauro Coccoli, Elisabetta Punta, "Sliding Mode Control of an Underwater Robotic," CDC Mobile Robots: Tracking Control}, Volume: 1, Page 2983 Paper number 1614, 2000.

[14]D. J. O'Brien, D. M. Lane, "Force and Slip Sensing for a Dextrous Underwater Gripper," IEEE Int. Conf. Robotics and Automation, pp.1057-1062, 1998.

[15]J. M. Selig, INTRODUCTION ROBOTICS, Prentic Hall International(UK) Ltd, 1992.
[16]Richard P. Paul, ROBOT MANIPULATORS: MATHEMATICS, PROGRAMMING, AND CONTROL, 竹一書局, 1982.

[17]蔡一誠,可程式化海床邊界層沈積物採樣器原型之設計,國立中山大學海下技術研究所碩士論文,中華民國九十三年六月。
[18]許正和,機構構造,高立圖書,2002。
[19]郭俊良、王培士 ,機器人的機構與控制,全華圖書,1989。
[20]小栗富士雄、小栗達男,機械設計圖表便覽,眾文出版社,1993。
[21]SEAEYE, http://www.seaeye.com/
[22]SEAMOR, http://www.seamor.com/
[23]SEABOTIX, http://www.seabotix.com/
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code