Responsive image
博碩士論文 etd-0714106-214306 詳細資訊
Title page for etd-0714106-214306
論文名稱
Title
被動式Q開關摻鐿釔鋁石榴石環形雷射之研究
The study of passively Q-switched Yb:YAG ring laser
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
65
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-06-25
繳交日期
Date of Submission
2006-07-14
關鍵字
Keywords
脈衝、時序擾動、環形共振腔、鐿釔鋁石榴石
ring laser, timing jitter, ring cavity, passively Q-switched laser, Yb:YAG
統計
Statistics
本論文已被瀏覽 5657 次,被下載 2023
The thesis/dissertation has been browsed 5657 times, has been downloaded 2023 times.
中文摘要
相較於傳統高功率固態雷射常用的增益介質Nd:YAG,Yb:YAG量子缺陷較小,沒有激發態吸收,自發輻射生命期較長,適用於Q開關雷射。此外,Yb:YAG摻雜濃度較高,可減短增益介質的厚度,對於共振腔內光路對稱性要求高的環形共振腔而言,可以減少環形共振腔內光路的偏移量及穩定性的破壞,因此,Yb:YAG適合用在雙鏡式環形共振腔架構中。本研究已得到斜率效率為50.3%之Yb:YAG環形雷射,並且分析熱效應對Yb:YAG環形雷射輸出的影響,以及與Nd:YAG環形雷射做比較。不同雷射路徑之環形雷射極化特性也將在本文中討論到。在製程方面,將對增益介質及雷射鏡上的光學鍍膜設計做介紹。

被動式Q開關雷射的優點在於其效率高、體積小、構造簡單不需要複雜的驅動電路,並且可以應用在非線性光學、醫療、微機械加工、材料製程及精密測距等。一般而言,由於受到增益介質之自發輻射的雜訊影響,使得被動式Q開關雷射有時續擾動的問題。本研究的目的即是研製低時序擾動之被動式Q開關Yb:YAG/Cr4+:YAG環形雷射。如今,實驗結果之Q開關雷射達峰值功率208W、脈衝寬度33 ns、斜率效率18.1%、時序擾動11.9%,就目前所得文獻資料顯示,這是第一個被動式Q開關Yb:YAG/Cr4+:YAG環形雷射。
Abstract
Compared with Nd:YAG, the traditional high power solid state laser gain medium, Yb:YAG has less quantum defect, no excited state absorption, and longer fluorescence lifetime, which makes it suitable for Q-switched laser. In addition, concentration quenching is absent in Yb:YAG, higher concentration of active ion makes the thickness of gain medium thinner. For ring cavities, the necessity of symmetrical beam path is important, a thinner Yb:YAG crystal can reduce the shift of optical beam path and avoids cavity unstability. Thus, Yb:YAG is suitable for the two-mirror ring cavity. In this study, a compact and efficient Yb:YAG ring laser with 50.3% slope efficiency was demonstrated. And the Yb:YAG ring laser performances influenced by thermal effect was analyzed and compared to that of Nd:YAG ring laser. The polarization of ring lasers with different configurations were also discussed. In manufacturing process, the coating design on gain medium and laser mirrors were introduced.

The advantages of passively Q-switched laser are efficient, compact, simple setup and no complicated driving circuits. They make passively Q-switched laser suitable for various applications, such as nonlinear optics, medical treatment, micromachining, material processing, and range finder. Due to spontaneous noise from the gain medium, conventional passively Q-switched laser has large timing jitter. This study is to build up a passively Q-switched Yb:YAG/Cr4+:YAG ring laser with lower timing jitter. At present, a Q-switched ring laser with a peak power of 208 W and a pulse width of 33 ns, was developed. Its slope efficiency is 18.1% with a timing jitter of 11.9%. To our knowledge, this is the first passively Q-switched Yb:YAG/Cr4+:YAG ring laser.
目次 Table of Contents
中文摘要 i
英文摘要 ii
目錄 iii
圖目錄 iv
表目錄 vii
第一章 緒論 1
第二章 環形共振腔與Yb:YAG雷射晶體 3
2.1再入射雙鏡式環形共振腔 3
2.2 Yb:YAG雷射晶體 11
第三章 連續波Yb:YAG環形雷射 15
3.1雷射鏡與Yb:YAG晶體的光學鍍膜 15
3.2 Yb:YAG環形雷射 19
3.3 Yb:YAG環形雷射的特性 26
3.3.1雷射極化 26
3.3.2熱效應 29
第四章 被動式Q開關Yb:YAG環形雷射 33
4.1 Q開關雷射的原理及Cr4+:YAG 飽和吸收體 33
4.2實驗結果 38
4.2.1雷射效率與脈衝寬度 38
4.2.2重複頻率與時序擾動 42
4.2.3被動式Q開關Yb:YAG與Nd:YAG環形雷射成果之 46
比較
第五章 結論 48
參考文獻 50
中英對照表 53
參考文獻 References
[1]張永順,“Nd:YAG脈衝雷射於三維微結構之研究”,國立中正大
學機械系碩士論文,2002。
[2]廖俊森,“以脈衝雷射蒸鍍法成長 BixY(3-x)Fe5O12薄膜及其磁
光效應的測量”,國立台灣大學物理學系研究所碩士論文,
1995。

[3]王君偉,“準三能階被動式Q開關藍光雷射的研究”,國立中山
大學光電工程研究所碩士論文,2001。
[4]T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,”
IEEE Journalof Quantum Electronics 29, 1457 (1993).
[5]J. Y. Yi and S. L. Huang, “Planar multipass ring laser
cavity,” Japanese Journal of Applied Physics 44, 1272
(2005).
[6]S. L. Huang, Y. H. Chen, P. L. Huang, J. Y. Yi, and H.
Z. Cheng, “Multi-reentrant nonplanar ring laser
cavity,” IEEE Journal of Quantum Electronics 38, 1301
(2002).
[7]陳穎慧,“多次再入射雙鏡式環形共振腔雷射之研究”,國立中
山大學光電工程研究所碩士論文,2001。
[8]D. C. Brown, “Ultrahigh-average-power diode-pumped
Nd:YAG and Yb:YAG lasers,” IEEE Journal of Quantum
Electronics 33, 861 (1997).
[9]T. Dascalu, T. Taira, and N. Pavel, “100-W quasi-
continuous-wave diode radially pumped microchip
composite Yb:YAG laser,” Optics Letters 27, 1791
(2002).
[10]T. Dascalu, N. Pavel, and T. Taira, “90 W continuous-
wave diode edge-pumped microchip composite Yb:Y3Al5O12
laser,” Applied Physics Letters 83, 4086 (2003).
[11]D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y.
Fan, “165-W cryogenically cooled Yb:YAG laser,”
Optics Letters 29, 2154 (2004).
[12]Q. Liu, M. Gong, F. Lu, W. Gong, and C. Li, “520-W
continuous-wave diode corner-pumped composite Yb:YAG
slab laser,” Optics Letters 30, 726 (2005).
[13]J. Dong, M. Bass, Yanli Mao, P. Deng and F. Gan,
“Dependence of the Yb3+ emission cross section and
lifetime on temperature and concentration in yttrium
aluminum garnet,” Journal of the Optical Society of
America B 20, 1975 (2003).
[14]W. F. Krupke, “Ytterbium solid-state lasers-The first
decade,” IEEE Journal on Selected Topics in Quantum
Electronics 6, 1287 (2000).
[15]Z. Huang, Y. Huang, M. Huang, and Z. Luo, “Optimizing
the doping concentration and the crystal thickness in
Yb3+-doped microchip lasers,” Journal of the Optical
Society of America B 20, 2061 (2003).
[16]F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R.
Hutcheson, and R. Equall, “Laser demonstration of
Yb3Al5O12 (YbAG) and materials properties of highly
doped Yb:YAG,” IEEE Journal of Quantum Electronics
37, 135 (2001).
[17]A. Giesen, H. Hügel, A. Voss, K. Witting, U. Brauch,
and H. Opower, “Scalable concept for diode-pumped
high-power solid-state lasers,” Applied Physics B 58,
365 (1994).
[18]C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud,
G. Zhang, M. Moser, S. Biswal, J. Ness, A. Braun, G.
A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U.
Keller, “Ultrafast ytterbium-doped bulk lasers and
laser amplifiers,” Applied Physics B 69, 3 (1999).
[19]F. Brunner, R. Paschotta, J. Aus der Au, G. J. Spü
hler, F. Morier-Genoud, R. Hövel, M. Moser, S. Erhard,
M. Karszewski, A. Giesen, and U. Keller, “Widely
tunable pulse durations from a passively mode-locked
thin-disk Yb:YAG laser,” Optics Letters 26, 379 (2001).
[20]C. Hönninger, G. Zhang, U. Keller, and A. Giesen,
“Femtosecond Yb:YAG laser using semiconductor
saturable absorbers,” Optics Letters 20, 2402 (1995).
[21]J. Aus der Au, G. J. Spühler, T. Südmeyer, R.
Paschotta, R. Hövel, M. Moser, S. Erhard, M.
Karszewski, A. Giesen, and U. Keller, “16.2-W average
power from a diode-pumped femtosecond Yb:YAG thin disk
laser,” Optics Letters 25, 859 (2000).
[22]E. Innerhofer, T. Südmeyer, F. Brunner, R. Häring, A.
Aschwanden, R. Paschotta, C. Hönninger, M. Kumkar, and
U. Keller, “60-W average power in 810-fs pulses from
a thin-disk Yb:YAG laser,” Optics Letters 28, 367
(2003).
[23]S. Uemura and K. Torizuka, “Center-wavelength-shifted
passively mode-locked diode-pumped ytterbium
(Yb):Yttrium aluminum garnet (YAG) laser,” Japanese
Journal of Applied Physics 44, L361 (2005).
[24]李正中,“薄膜光學與鍍膜技術”,第三版,藝軒出版社,
2002。
[25]裴善莊,“雙鏡式立體環型共振腔單縱模紅外光與藍光雷射之
研製”,國立中山大學光電工程所碩士論文,2003
[26]F. L. Pedrotti, S. J. and L. S. Pedrotti,
“Introduction to Optics,” 2nd ed.(Prentice –Hall,
Inc. 1993), ch.15
[27]翁俊仁,“雙鏡式立體環型共振腔單縱模紅外光與綠光雷射之
研製”,國立中山大學光電工程研究所碩士論文,2001。
[28]T. Taira, W. M. Tulloch and R. L. Byer, “Modeling of
quasi-three- level lasers and operation of cw Yb:YAG
lasers,” Applied Optics 36, 1867 (1997).
[29]R. D. Guenther, “Modern Optics,” (Wiley, 1990), pp.
38-48.
[30]A. Ikesue and K. Yoshida, “Thermal-birefringence-
induced depolarization in Nd:YAG ceramics,” Optics
Letters 27, 234 (2002).
[31]M. Ohmi, M. Akatsuka, K. Ishikawa and K. Naito, “High-
sensitytity two-dimensional thermal- and mechanical-
stress-induced birefringence measurements in a Nd:YAG
rod,” Applied Optics 33, 6368 (1994).
[32]A. Yariv, “Optical Electronics in Modern
Communication,” 5th ed. (Oxford university press,
1997), ch. 2.
[33]W. Koechner,“Solid-State Laser Engineering”(Springer-
Verlag,Berlin, 1999)
[34]黃碧鈴,“雙球面鏡之多次再入射環形共振腔雷射之研究及應
用”,國立中山大學光電工程研究所博士論文,2003。
[35]王健鴻,”外加雷射調制之被動式Q開關Nd:YAG/Cr4+:YAG雷射
研究”,國立中山大學光電工程研究所碩士論文,1999。
[36]J. Dong, P. Deng, Y. Liu, Y. Zhang, J. Xu, W. Chen and
X. Xie, “Passively Q-switched Yb:YAG laser with
Cr:YAG as the saturable absorber” Applied Optics 40,
4305 (2001).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code