Responsive image
博碩士論文 etd-0714108-114551 詳細資訊
Title page for etd-0714108-114551
論文名稱
Title
高屏溪舊鐵橋人工溼地處理污水系統之菌相分析
The bacterial diversity in a KaoPing River constructed wetland for wastewater treatment
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
158
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-06-13
繳交日期
Date of Submission
2008-07-14
關鍵字
Keywords
高屏溪舊鐵橋人工溼地、變性梯度凝膠電泳、細菌多樣性
denaturing gradient gel electrophoresis (DGGE), microbial diversity, KaoPing River Rail Bridge constructed wetland
統計
Statistics
本論文已被瀏覽 5682 次,被下載 24
The thesis/dissertation has been browsed 5682 times, has been downloaded 24 times.
中文摘要
人工濕地是將生態工法技術應用於自然水體或廢水處理及管理上的一種自然淨化程序。此型人工濕地利用底泥介質、微生物及水生植物,去除污染物使水質達到淨化效果。本研究自2007年4月至2008年4月每隔三個月採樣一次,利用PCR-DGGE技術探討溼地底泥細菌之多樣性,並配合水質分析,來評估高屏溪舊鐵橋人工溼地對各種生活污染物去除及水質淨化的效率。水質監測結果亦顯示,經由人工溼地處理後,各項污染指標去除率分別為生化需氧量> 60%、化學需氧量> 41%、硝酸鹽類> 46%、總氮> 22%、大腸菌數> 97%,顯示溼地具有自然的水質淨化效果。菌相分析結果顯示,人工溼地A、B二系統的污水進水口分別具有特殊的菌相,但經過一系列的溼地系統,菌相逐漸變化並在末端出流口趨於相似。而不同介質中 (底泥、水、水生植物組織表面生物膜及單元池周邊土) 的菌相也有明顯的差異。本研究亦利用E. coli做為病原微生物污染的指標,在DGGE圖譜中,E. coli存在量隨著水流進入溼地系統的距離增加而逐漸消失,表示水體受排泄物污染的程度有降低現象,並終至消失。亦即高屏溪舊鐵橋人工溼地處理系統可以於污水排入高屏溪前,有效去除水中的污染物及排泄物污染微生物。本研究結果可做為溼地底泥菌相監測的參考,期望能增進民眾對此污染整治建設的信賴,進而達成水質淨化及自然環境保護的目標。
Abstract
Constructed wetlands had been used for water treatment worldwide. The efficiency of wastewater treatment in a constructed wetland depends on its design, types of aquatic plants and microbial community present in this wetland. The goal of this study is to analyze the microbial populations in KaoPing River Rail Bridge constructed wetland which was designed to remove the polluted material from municipal sewage and industrial wastewater. Sediment and water samples were collected every 3 months from April, 2007 to April, 2008. The bacterial community diversities were analyzed by PCR-DGGE of the bacterial 16S rRNA gene. Results show approximately 60% BOD, 41% COD, 46% nitrate, 22% total nitrogen, and 97% coliforms were removed by this wetland system. DGGE profiles revealed the bacterial community diversities shifted progressively from the entry to the exit of both A and B systems in this wetland. The microbial populations in water, sediment, biofilms on plants, and soil were quite different from each others. The fecal indicator Escherichia coli was used as a marker to monitor the fecal contamination in all samples. From PCR-DGGE profiles, E. coli could be successfully removed by this wetland system. In conclusion, this constructed wetland is a very successful system for wastewater treatment and is able to remove most of the pollutants before they are discharged into KaoPing River. The results of this study provided useful suggestions for the government to assess the bacterial diversities and the efficiency of this wetland system, to protect people from hazardous risks, and to manage a constructed wetland in the future.
目次 Table of Contents
摘要............................................................................................................Ι
第一章 前言..............................................................................................1
1.1 溼地概述............................................................................................1
1.1.1 溼地定義..................................................................................1
1.1.2溼地的功能................................................................................3
1.1.3 溼地組成..................................................................................4
1.1.4 人工溼地設計..........................................................................5
1.1.4.1 維護與監測.....................................................................6
1.1.4.2 溼地中的微生物.............................................................6
1.1.5 微生物的廢水處理..................................................................7
1.1.5.1 有機物的去除.................................................................7
1.1.5.2 氮的去除.........................................................................9
1.1.5.3 磷的去除.......................................................................11
1.2 高屏溪舊鐵橋人工溼地..............................................................11
1.2.1 溼地系統設置........................................................................12
1.3 環境污染..........................................................................................13
1.3.1 生物技術在環境整治的應用................................................14
1.3.2 以生物化學及分子生物技術監測環境微生物....................15
1.4 PCR-DGGE技術............................................................................18
1.4.1 DGGE原理.............................................................................19
1.4.2 16S rRNA基因........................................................................20
1.5 研究目的.......................................................................................23
第二章 實驗材料與方法........................................................................24
2.1 溼地採樣.......................................................................................24
2.1.1 採樣時間與位置....................................................................24
2.1.2 採樣方法................................................................................25
2.2 水質與底泥之物理化學分析.......................................................26
2.3 底泥細菌DNA萃取.....................................................................26
2.3.1 土壤中細菌DNA萃取..........................................................27
2.3.2 chromosome DNA的瓊脂膠體電泳檢視..............................28
2.4 PCR.................................................................................................28
2.4.1 PCR條件.................................................................................29
2.4.2 PCR片段瓊脂膠體電泳檢視.................................................29
2.4.3 PCR片段純化與濃縮.............................................................30
2.4.4 DNA濃度測定........................................................................30
2.5 DGGE.............................................................................................31
2.5.1 DGGE膠體製作.....................................................................31
2.5.2 DGGE樣本注入.....................................................................32
2.5.3 DGGE操作條件.....................................................................33
2.5.4 DGGE膠片染色與偵測.........................................................33
2.5.5 DGGE圖譜相似度分析.........................................................34
2.6 cloning與定序................................................................................35
2.6.1 針對DGGE單一條帶............................................................35
2.6.2 採樣點mixed-DNA篩選.......................................................36
2.6.3 gel-elution回收PCR產物.......................................................37
2.6.4 TA cloning...............................................................................38
2.6.5 利用限制酵素進行cloning...................................................38
2.6.6 E. coli DH5α competent cell製作...........................................39
2.6.7 transformation..........................................................................40
2.6.8 確認clone...............................................................................41
2.6.9 DGGE篩選clone...................................................................43
2.6.10 定序比對..............................................................................43
第三章 結果與討論................................................................................44
3.1 基本水質分析...............................................................................44
3.2 細菌DNA萃取與16S rRNA基因片段之PCR結果………….46
3.3 DGGE圖譜分析結果.....................................................................47
3.3.1 各採樣季菌相比對分析........................................................47
3.3.2 各單元池菌相比對分析........................................................49
3.3.3 CW-1與CW-6內不同介質之垂直菌相比對分析................51
3.3.4 周邊土菌相分析....................................................................53
3.3.5 水、底泥與植物介質對菌相的影響.....................................54
3.4 菌種定序結果...............................................................................55
3.5濕地水質改善與菌相之探討.........................................................56
3.5.1 氮的去除與菌相....................................................................57
3.5.2 碳氫化合物降解與菌相........................................................58
3.6 分子生物技術對於菌相研究的限制...........................................60
3.6.1 PCR-DGGE的限制.................................................................60
3.6.2 生物標記及生化特性的協助................................................62
第四章 結論與建議................................................................................65
參考文獻..................................................................................................67
參考書籍..................................................................................................81
圖表..........................................................................................................82
附錄........................................................................................................125
參考文獻 References
Acinas, S. G., V. Klepac-Ceraj, D. E. Hunt, C. Pharino, I. Ceraj. D. L. Distel, and M. F. Polz. 2004. Fine-scale phylogenetic architecture of a complex bacterial community. Nature. 430:551-554.
Amann. R. L., W. Ludwig, and K. H. Schliefer. 1995. Phylogenetic identication and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59:143-169.
Baker, G. C., J. J. Smith, and D. A. Cowan. 2003. Review and re-analysis of domain-specific 16S primers. J. Micro. Methods 55:652-555.
Bano N., S. Ruffin, B. Ransom, and J. T. Hollibaugh. 2004. Phylogenetic composition of arctic ocean archaeal assemblages and comparison with Antarctic assemblages. Appl. Environ. Micobiol. 70:781-789.
Beier, S., K.-P. Witzel, and J. Marxsen. 2008. Bacterial community composition in Central European running waters examined by temperature gradient gel electrophoresis and sequence analysis of 16S rRNA genes. Appl. Environ. Microbiol. 74:188-199.
Beismann, H., J. H. A. Baker, A. Karp, and T. Speck. 1997 AFLP analysis sheds light on distribution of two Salix species and their hybrid along a natural gradient. Mol. Ecol. 6:989-993.
Binks, P. R., S. Nicklin, and N. C. Bruce. 1995. Degradation of RDX by Stenotrophomonas maltophilia PB1. Appl Environ Microbiol. 61:1813-1822.
Boonchan, S., M. L. Britz, and G. A. Stanley. 1998. Surfactant-enhanced biodegradation of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophilia. Biotech Bioeng. 59:482-494.
Bubert, A., I. Hein, M. Rauch, A. Lehner, B. Yoon, W. Goebel, and M. Wagner. 1999. Detection and differentiation of Listeria spp. by a single reaction based on multiplex PCR. Appl. Environ. Microbiol. 65:4688–4692.
Campbell, C. D., S. J. Chapman, C. M. Cameron, M. S. Davidson, and J. M. Potts. 2003. A rapid microtiter plate method to measure carbon dioxide evolved from carbon amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl. Environ. Microbiol. 69:3593-3599.
Carbon, P., C. Ehresmann. B, Ehresmann, and J.-P. Ebel. 1979. The complete nucleotide sequence of the ribosomal 16S rRNA from Escherichia coli. Eur. J. Biochem. 100:399-410.
Case, R. J., Y. Boucher, I. Dahllöf, C. Holmström, W. F. Doolittle, and S. Kjellebreg. 2007. Use of 16S rRNA and rpoB genes as molecular markers for microbial ecology studies. Appl. Environ. Microbiol. 73:278-288
Cebron, A., M. Coci, J. Garnier, and H. J. Laanbroek. 2004. Denaturing gradient gel electrophoretic analysis of ammonia-oxidizing bacterial community structure in the lower Seine River: impact of Paris wastewater effluents. Appl. Environ. Microbiol. 70:6726-6737.
Chakrabarty, A. M., G. Chou, and I. C. Gunsalus. 1973. Genetic regulation of octane dissimulation plasmids in Pseudomonas. Proc. Natl. Acak. Sci. USA 70:1137-1140.
Chen. C. C., L. J. Teng, and T. C. Chang.2004. Identigication of clinically relevant viridians groups streptococci by sequence analysis of the 16S-23S ribosomal DNA spacer region. J. Clin. Microbiol. 42:2651.2657.
Classen, A. T., S. I. Boyle, K. E. Haskins, S. T. Overby, and S. C. Hart. 2003. Community-level physiological profiles of bacteria and fungi: plate type and incubation temperature influences on contrasting soils. FEMS Microbiol. Ecol. 44:319-328.
Dahllöf I., H. Baillie, and S. Kjelleberg. 2000. rpoB-based microbial community analysis avoids limitations inherent in 16S rRNA gene intraspecies heterogeneity. Appl. Environ. Microbiol. 66:3376-3380.
Dandie, C. E., M. N. Miller, D. L. Burton, B. J. Zebarth, J. T. Trevors, and C. Goyer. 2007. Nitric oxide reductase-targeted real-time PCR quantification of dinitrifier populations in soil. Appl. Environ. Microbiol. 73:4250-4258.
Dar, S. A., J. G. Kuenen, and G. Muyzer. 2005. Nested PCR-denaturing gradient gel electrophoresis approach to determine the diversity of sulfate-reducing bacteria in complex microbial communities. Appl. Environ. Microbiol. 71:2325-2330.
de Lipthay, J. R., C. Enzinger, K. Johnsen, J. Aamand, and S. J. Sorensen. 2004. Impact of DNA extraction method on bacterial community composition measured by denaturing gradient gel electrophoresis. Soil Biol. Biochem. 36:1607-1614.
Degrassi, G., B. C. Okeke, C. V. Bruschi, and V. Venturi. 1998. Purification and characterization of an acetul xylan esterase from Bacillus pumilus. Appl. Environ. Microbiol. 64:789-792.
Degrassi, G., P. P. de Laureto, and C. V. Bruschi. 1995. Purification and characterization of ferulate and p-coumarate decarboxylase from Bacillus pumilus. Appl. Environ. Microbiol. 61:326-332.
Dighe, A. S., K. Jangid, J. M. Gonzalez, V. J. Pidiyar, M. S. Patole, D. R. Ranade,and Y. S. Shouche. 2004. Comparison of 16S rRNA gene sequences of genus Methanobrevibacter. BMC Microbiology. 4:20
Dombek, P. E., L. K. Johnson, S. T. Zimmerley, and M. J. Sadowsky. 2000. Use of repetitive DNA sequences and the PCR to differentiate Escherichia coli isolates from human and animal sources. Appl. Environ. Microbiol. 66:2572-2577.
Drancourt, M., C. Bollet, A. Carlioz, R. Martelin, J. P. Gayral, and D. Raoult. 2000. 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates. J. Clin. Microbiol. 38:3623-3630.
Drancourt, M., V. Jacomo, H. Lepidi, E. Lechevallier, V. Grisoni, C. Coulange, E. Ragni, C. Alasia, B. Dussol, Y. Berland, and D. Raoult. 2003. Attempted isolation of Nanobacterium sp. Microorganisms from upper urinary tract stones. J Clin Microbiol. 41:368-372.
Dryden, S., and S. Kaplan. 1990. Localization and structural analysis of the ribosomal RNA operons of Rhodobacter sphaeroides. Nucleic Acids Res. 18:7267-7277.
Egert, M. and M. W. Friedrich. 2003. Formation of pseudo-terminal restriction fragments, a PCR-related bias affecting terminal restriction fragment length polymorphism analysis of microbial community structure. Appl. Environ. Microbiol. 69:2555-2562.
Esteve-Núñez, A., A. Caballero, and J. L. Ramos. 2001. Biological degradagion of 2,4,6-trinitrotoluene. Microbiol. Mol. Biol. Rev. 65:335-352.
Fagervold, S. K., J. E. M. Watts, H. D. May, and K. R. Sowers. 2005. Sequential reductive dechlorination of meta-chlorinated polychlorinated biphenyl congeners in sediment microcosms by two different Chloroflexi phylotypes. Appl. Environ. Microbiol. 71:8085-8090.
Fahrbach, M. 2006. Anaerobic degradation of steroid hormones by novel denitrifying bacteria. PhD thesis, RWTH Aachen University, Germany
Farrelly, V., F. A. Rainey, and E. Stackebrandt. 1995. Effect of genome size and rrn gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species. Appl. Environ. Microbiol. 61:2798–2801.
Fazi, S., S. Amalfitano, J. Pernthaler, and A. Puddu. 2005. Bacterial communities associated with benthic organic matter in headwater stream microhabitats. Environ. Microbiol. 7:1633-40.
Fennell, D. E., I. Nijenhuis, S. F. Wilson, S. H. Zinder, and M. M. Ha¨ggblom. 2004. Dehalococcoides ethenogenes strain 195 reductively dechlorinates diverse chlorinated aromatic pollutants. Environ. Sci. Technol. 38:2075–2081.
Folk, R. L. 1993. SEM imaging of bacteria and nanobacteria in carbonate sediments and rocks. J. Sediment. Petrol. 63:990–999.
Gabriela F. D., A. S. Rosado, L. Seldin, de W. Araujo, and van J. D. Elsas. 2001. Analysis of bacterial community structure in sulfurous-oil-containing soils and detection of species carrying dibenzothiophene desulfurization gene. Appl. Environ. Micobiol. 67:1052-1062.
Gevers, D., F. M. Cohan, J. G. Lawrence, B. G. Spratt, T. Coenye, E. J. Feil, E. Stackebrandt, Y. Van de Peer, P. Vandamme, F. L. Thompson, and J. Swings. 2005. Re-evaluating prokaryotic species. Nat. Rev. Microbiol. 3:733-739.
Giovannoni, S. J., T. B. Britschgi, C. L. Moyer, and K. G. Field. 1990. Genetic diversity in Sargasso Sea bacterioplankton. Nature 345:60-63.
Glo¨ckner, F. O., E. Zaichikov, N. Belkova, L. Denissova, J. Pernthaler, A. Pernthaler, and R. Amann. 2000. Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of actinobacteria. Appl. Environ. Microbiol. 66:5053–5065.
Goberna, M., H. Insam, S, Klammer, J. A. Pascual, and J. Sanchez. 2005. Microbial community structure at different depths in disturbed and undisturbed semiarid Mediterranean forest soils. Microb. Ecol. 50:315-326.
Greene, E. A., J. G. Kay, K. Jaber, L. G. Stehmeier, and G. Voodouw. 2000. Composition of soli microbial communities enriched on a mixture of aromatic hydrocarbons. Appl. Environ. Microbiol. 66:5282-5289.
Grüntzig, V., S. C. Nold, J. Zhou, and J. M. Tiedje. 2001. Pseudomonas stutzeri nitrite reductase gene abundance in environmental samples measured by real-time PCR. Appl. Environ. Microbiol. 67:760–768.
Gunderson, J. H., M. L. Sogin, G. Wollett, M. Hollingdale, V. F. Delacruz, A. P. Waters, and T. F. Mccutchan. 1987. Structurally distinct, stage specific ribosomes occur in Plasmodium. Science 238:933-937.
Haynes, S., A. C. Darby, T. J. Daniell, G. Webster, F. J. Van Veen, H. C. Godfray, J. I. Prosser, and A. E. Douglas. 2003. Diversity of bacteria associated with natural aphid populations. Appl. Environ. Microbiol. 69:7216-7223.
Henry, S., D. Bru, B. Stres, S. Hallet, and L. Philippot. 2006. Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Appl. Environ. Microbiol. 72:5181–5189.
Henry, S., E. Baudoin, J. C. Lopez-Gutierrez, F. Martin-Laurent, A. Brauman, and L. Philippot. 2004. Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR. J. Microbiol. Methods 59:327–335.
Holben W. E. 1994. Isolation and purification of bacterial DNA from soil. Methods of Soil Analysis, Soil Society of America. pp.727-751.
Holder-Franklin, M. A. 1981. Methods of studying population shifts in aquatic bacteria in response to environmental change. Scientific seres, vol. 124. Inland Waters Directorate, Ottawa, Canada.
Ishii, S., W. B. Ksoll, R. E. Hicks, and M. J. Sadowsky. 2006. Presence and growth of naturalized Escherichia coli in temperate soils from lake Superior watersheds. Appl. Environ. Microbiol. 72:612-621.
Johnson, J. L. Nucleic acids in bacterial classification. In Bergey's manual of systematic bacteriology (Edited by: Kreig NR, Holt JG). Baltimore: Williams & Wilkins 1984, I:8-11.
Johnson, L. K., M. B. Brown, E. A. Carruthers, J. A. Ferguson, P. E. Dombek, and M. J. Sadowsky. 2004. Sample size, library composition, and genotypic diversity among natural populations of Escherichia coli from different animals influence accuracy of determining sources of fecal pollution. Appl. Environ. Microbiol. 70:4478-4485.
Johnson, W. M., S. D. Tyler, E. P. Ewan, F. E. Ashton, D. R. Pollard, and K. R. Rozee. 1991. Detection of genes for enterotoxins, exfoliative toxins, and toxic shock syndrome toxin 1 in Staphylococcus aureus by the polymerase chain reaction. J. Clin. Microbiol. 29:426–430.
Juhasz, A. L., G. A. Stanley, and M. L. Britz. 2000. Microbial degradation and detoxification of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophilia strain VUN 10003. Lett Appl Microbiol. 30:396-401.
Juhasz, A. L., G. A. Stanley, and M. L. Britz. 2000. Microbial degradation and detoxification of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophilia strain VUN 10,003. Letters in Applied Microbiology, 30:396-401.
Kadlec, R. H. 1995. Overview : surface flow constructed wetlands. Water Science and Technology. 32:1-12.
Kourkine, I. V., C. N. Hestekin, and A. E. Barron. 2002. Technical challenges in applying capillary electrophoresis-single strand conformation polymorphism for routine genetic analysis. Electrophoresis 23: 1375–1385.
Kowalchuk, G. A., J. R. Stephan, W. D. Boer, J. I. Prosser, T. M. Embley, and J. W. Woldendorp. 1997. Analysis of ammonia-oxidizing bacteria of the beta-subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Appl. Environ. Microbiol. 63:1489-1497.
Laguerre, G., M. Allard, F. Revoy, and N. Amarger. 1994. Rapid identification of Rhixobia by trstriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes. Appl. Environ. Micobiol. 60:56-63.
Lambert, B., and H. Joos. 1989. Fundamental aspects of rhizobacterial plant growth promotion research. Trends Biotechnol. 7:215-219.
Lau, S. K. P., A. McNabb, G. K. S. Woo, L. Hoang, A. M. Y. Fung, L. M. W. Chung, P. C. Y. Woo, and K.-Y. Yuen. 2007. Catabacter hongkongensis gen. nov., sp. Nov., isolated from blood cultures of patients from Hong Kong and Canada. Appl. Environ. Microbiol. 45:395-401.
Leckie, S. E. 2005. Methods of microbial community profiling and their application to forest soils. For. Ecol. Manag. 220:88-106.
Leclerc, H., D. A. A. Mossel, S. C. Edberg, and C. B. Struijk. 2001. Advances in the bacteriology of the coliform group: their suitability as markers of microbial water safety. Annu. Rev. Microbiol. 55:201-234.
Lerman, L. S., S. G. Fischer, I. Hurley, K. Silverstein, and N. Lumelsky. Sequence-determined DNA separations. 1984. Annu. Rev. Biophys. Bioeng. 13:399-423
Li, Z. J., J. M. Xu, C. X. Tang, J. J. Wu, A. Muhammad, and H. Z. Wang. 2006. Application of 16S rDNA-PCR amplification and DGGE fingerprinting for detection of shift in microbial community diversity in Cu-, Zn-, and Cd-contaminated paddy soils. Chemoshere. 62:1374-1380.
Liesack, W., H. Weyland, and E. Stackebrandt. 1991. Potential risks of gene amplification by PCR as determined by 16S rDNA analysis of a mixedculture of strict barophilic bacteria. Microb. Ecol. 21:191–198.
Liu, T., K. Liljebjelke, E. Bartlett, C. Hofacre, S. Sanchez, and J. J. Maurer. 2002. Application of nested polymerase chain reaction to detection of Salmonella in poultry environment. J. Food Prot. 65:1227–1232.
Liu, W. T., T. L. Marsh, H. Cheng, and L. J. Forney. 1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol. 63:4516-22.
Martiny, A. C., H- J. Albrechtsen, E. Arvin, and S. Molin. 2005. Identification of bacteria in biofilm and bulk water samples from a nonchlorinated model drinking water distribution system: detection of a large nitrite-oxidizing population associated with Nitrospira spp. Appl. Environ. Microbiol. 71:8611-8617.
Marxsen, J., and K. Moaledj. 1988. On the structure of bacterial communities in a Central European open grassland stream, the Breitenbach. Verh. Int. Ver. Limnol. 23:1855-1860.
Matthies, C., S. Evers, W. Ludwig, and B. Schink. 2000. Anaerovorax odorimutans gen. nov., sp. Nov., a putrescine-fermenting strictly anaerobic bacterium. Int J Syst Evol Microbiol. 50:1591-1594.
Maurer, J. J., D. Schmidt, P. Petrosko, S. Sanchez, L. Bolton, and M. D. Lee. 1999. Development of primers to O-antigen biosynthesis genes for specific detection of Escherichia coli O157 by PCR. Appl. Environ. Microbiol. 65:2954–2960.
McGarvey, J. A., W. G. Miller, S. Sanchez, and L. Stanker. 2004. Identification of bacterial populations in dairy wastewaters by use of 16S rRNA gene sequences and other genetic markers. Appl. Environ. Microbiol. 70:4267-4275.
McKay, D. S., E. K. Gibson, Jr., K. L. Thomas-Keprta, H. Vali, C. S. Romanek, S. J. Clemett, X. Chillier, C. R. Maechling, and R. N. Zare. 1996. Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science 273:924–930.
Meincke, M., E. Krieg, and E. Bock. 1989. Nitrosovibrio spp., the dominant ammonia-oxidizing bacteria in building sandstone. Appl. Environ. Microbiol. 55:2108-2110.
Michael Fahrbach.2006. Anaerobic degradation of steroid hormones by novel denitrifying bacteria
Moyer, C. L., J. M. Tiedjue, F. C. Dobbs, and D. M. Karl. 1996. A computer-stimulated restriction fragment length polymorphism analysis of bacterial small-subunit rRNA genes: efficacy of selected tetrameric restriction enzymes for studies of microbial diversity in nature. Appl. Environ. Microbiol. 62: 2501-2507.
Muyzer, G., and E. C. de Waal. 1994. Determination of the genetic diversity of microbial community using DGGE analysis of PCR amplified 16S rRNA. NATO ASi Ser. G35:207-214.
Muyzer, G., E. C. de Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59:695-700.
Myers, R. M., T. Maniaris, and L. S. Lerman. 1987. Detection and localization of single base changes by denaturing gel electrophoresis. Methods Enzymol. 155:501-527
Nielsen, J. L., C. Klausen, P. H. Nielsen, M. Burford, and N. O. Jorgensen. 2006. Detection of activity among uncultured Actinobacteria in a drinking water reservoir. FEMS Microbiol. Ecol. 55:432-8.
Niemi, R. M., I. Heiskanen, K. Wallenius, K. Lindström. 2001. Extraction and purification of DNA in rhizosphere soil samples for PCR DGGE analysis of bacterial consortia. J. Microbiol. Methods 45:155 165
Nübel, U., B. Engelen, A. Felske, J. Snaidr, A. Wieshuber, R. I. Amann, W. Ludwig, and H. Backhaus. 1996. Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J. Bacteriol. 178:5636-5643.
Ogasawara, N., S. Nakai, and H. Joshikawa. 1994. Systematic sequencing of the 180 kilobase region of the Bacillus subtilis chromosome containing the replication region. DNA Res. 1:1-14.
Ogram, A. V., G. S. Sayler, and T. T. Barkay. 1988. The extraction and purification of microbial DNA from sediments. J. Microbiol. Methods. 7:57–66.
Olsen, G. J., D. J. Lane, S. J. Giovannoni, N. R. Pace, and D. A. Stahl. 1986. Microbial ecology and evolution: a ribosomal RNA approach. Annu. Rev. Microbiol. 40:337-365.
Pages, D., J. Rose, S. Conrod, S. Cuine, P. Carrier, T. Heulin, and W. Achouak. 2008. Heavy metal tolerance in Stenotrophomonas maltophilia. PLoS ONE. 3(2)e1539.
Palleroni, N. J., A. M. Port, H.-K. Chang, and G. J. Zylstra. 2004. Hydrocarboniphaga effuse gen. nov., sp. Nov., a novel member of the γ-Proteobacteria active in alkane and aromatic hydrocarbon degradation. Int J Syst Microbiol. 54:1203-1207.
Perez-Luz, S., Y. M. Adela, and V. Catalan. 2004. Identification of waterborne bacteria by the analysis of 16S-23S rRNA intergenic spacer region. J. Appl. Microbiol. 197:191-204.
Pernthaler, A., J. Pernthaler, and R. Amann. 2002. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl. Environ. Microbiol. 68:3094-101.
Philippot, L. 2005. Tracking nitrate reducers and denitrifiers in the environment. Biochem. Soc. Trans. 33:200–204.
Polz, M. F., and C. M. Cavanaugh. 1998. Bias in template-to-product ratios in multitemplate PCR. Appl. Environ. Microbiol. 64:3724-3730.
Preston, S., S. Wirth, K. Ritz, B. S. Griffiths, and L. M. Young. 2001. The role played by microorganisms in the biogenesis of soil cracks: importance of substrate quantity and quality. Soil Biol. Biochem. 33:1851-1858.
Pulliam Holoman, T. R., M. A. Elberson, L. A. Cutter, H. D. May, and K. R. Sowers. 1998. Characterization of a defined 2,3,5,6-tetrachlorobiphenyl-ortho-dechlorinating microbial community by comparative sequence analysis of genes coding for 16S rRNA. Appl. Environ. Microbiol. 64:3359–3367.
Rainey, F. A., N. Ward, L. I. Sly, and E. Stackebrandt. 1994. Dependence on the taxon composition of clone libraries for PCR amplified, naturally occurring 16S rDNA, on the primer pair and the cloning system used. Experientia. 50:796–797.
Ravot, G., M. Magot, M.-L. Fardeau, B. K. Patel, P. Thomas, J.-L. Garcia, and B. Ollivier. 1999. Fusibacter paucivorans gen. nov., sp. Nov., an anaerobic, thiosulfate-reducing bacterium from an oil-producing well. Int J Syst Bacteriol. 49:1141-1147.
Resnick, S. M., and D. T. Gibson. 1996. Regio-and stereospecific oxidation of fluorine, dibenzofuran, and dibenzothiophene by naphthalene dioxygenase from Pseudomonas sp. Strain NCIB 9816-4. Appl. Environ. Microbiol. 62: 4073-4080.
Reysenbach, A., L. J. Giver, G. S. Wickham, and N. R. Pace. 1992. Differential amplification of rRNA genes by polymerase chain reaction. Appl. Environ. Microbiol. 58:3417–3418.
Rollins B. D., and R. R. Colwell. Viable but nonculturable stage of Campylobacter jejuni and its role in survival in the natural aquatic environment. Appl. Environ. Micobiol. 52:531-538.
Rozsak D. B., and R. R. Colwell. 1987. Survival strategies of bacteria in the natural environment. Micobiol. Rev. 51:365-379.
Saiki, R. K., S. Scharf, F. Faloona, K. B. Mullis, G. T. Horn, H. A. Erlich, and N. Arnheim. 1985. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350-1354.
Samanta, S. K., A. K. Chakraborti, and R. K. Jain. 1999. Degradation of phenanthrene by different bacteria: evidence for novel transformation sequences involving the formation of 1-naphthol. Appl. Environ. Microbiol. 53:98-107.
Samanta, S. K., B. Bhushan, and R. K. Jain. 2001. Efficiency of naphthalene and salicylate degradation by a recombinant Pseudomonas putida mutant strain defective in glucose metabolism. Appl. Environ. Microbiol. 55:627-631.
Sarah J. M., J. R. Stephen, A. D. Venosa, G. A. Davis, Y. J. Chang, and D. C. White. 1999. Microbial population changes during bioremediation of an experimental oil spil. Appl. Environ. Micobiol. 65:3566-3574.
Sekiguchi, Y., Y. Kamagata, K. Syutsubo, A. Ohachi, H. Harada, and K. Nakamura. 1998. Phylogenetic diversity of mesophilic and thermophilic granular sludges determined by 16S rRNA gene analysis. Microbiol. 144:2655-2665.
Sigler, W. V., C. Miniaci, and J. Zeyer. 2004. Electrophoresis time impacts the denaturing gradient gel electrophoresis-based assessment of bacterial community structure. J. Microbiol Methods. 57:17-22.
Stevenson, F. J. 1982. Humans chemistry: genesis, composition, reaction. Wiley-Interscience, New York.
Suzuki, M. T., and S. J. Giovannoni. 1996. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl. Environ. Microbiol. 62:625–630.
Tang, Y.-W., N. M. Ellis, M. K. Hopkins, D. H. Smith, D. E. Dodge, and D. H. Persing. 1998. Comparison of phenotypic and genotypic techniques for identification of unusual aerobic pathogenic gram-negative bacilli. J. Clin. Microbiol. 36:3674–3679.
Tebbe, C. C., and W. Vahjen. 1993. Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast. Appl. Environ. Microbiol. 59:2657–2665.
Teira, E., T. Reinthaler, A. Pernthaler, J. Pernthaler, and G. J. Herndl. 2004.Combining catalyzed reporter deposition-fluorescence in situ hybridization and microautoradiography to detect substrate utilization by bacteria and Archaea in the deep ocean. Appl. Environ. Microbiol. 70:4411-4.
Thompson, F. L., D. Gevers, C. C. Thompson, P. Dawyndt, S. Naser, B. Hoste, C. B. Munn, and J. Swings. 2005. Phylogeny and molecular identification of vibrios on the basis of multilocus sequence analysis. Appl. Environ. Microbiol. 71:5107–5115.
Trebesius, K., D. Harmsen, A. Rakin, J. Schmelz, and J. Heesemann. 1998. Development of rRNA-targeted PCR and in situ hybridization with fluorescently labelled oligonucleotides for detection of Yersinia species. J. Clin. Microbiol. 36:2557–2564.
Tunlid, A., and D. White. 1992. Biochemical analysis of biomass, community structure, nutritional status, and metabolic activities of microbial communities in soil. Soil biochemistry. 7:229-262.
United States Environmental Protection Agency. 1986. Ambient water quality criteria for bacteria-1986. United States Environmental Protection Agency, Washington, D.C.
Van de Peer, V., S. Chapelle, and R. D. Wachter. 1996. A quantitative map of nucleotide substitution rates in bacterial rRNA. Nucleic Acids Res. 24:3381-3391.
Wayne, L.G., D. J. Brenner, R. R. Colwell, P. A. D. Grimont, O. Kandler, M. I. Krichevsky, W. E. C.Moore, R. G. E. Murray, E. Stackebrandt, M. P. Starr, and H. G. Truper. 1987. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol. 37:463-464.
Wardle, D. A. 1992. A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol. Rev. 67:321-358.
Warnecke, F., R. Amann, and J. Pernthaler. 2004. Actinobacterial 16S rRNA genes from freshwater habitats cluster in four distinct lineages. Environ. Microbiol. 6:242–253.
Watanabe, K. 2001. Microorganisms relevant to bioremediation. Current Opinion in Biotechnology. 12:237-241.
Whipps, J. 2001. Microbial interactions and biocontrol in the rhizosphere. J Exp Bot. 52:487-511.
White, D. C., and R. H. Findlay. 1988. Biochemical markers for measurement of predation effects on the biomass, community structure, nutritional status, and metabolic activity of microbial biofilms. Hydrobiologia. 159:119-132.
Winfield, M. D., and E. A. Groisman. 2003. Role of nonhost environments in the lifestyles of Salmonella and Escherichia coli. Appl. Environ. Microbiol. 69:3687-3694.
Woese, C. R. Bacterial evolution. 1987. Microbiol. Rev. 51:221-271.
Wyss, C., F. E. Dewhirst, B. J. Paster, T. Thurnheer, and A. Luginbuhl. 2005. Guggenheimella bovis gen. nov., sp. Nov., isolated from lesions of bovine dermatitis digitalis. Int J Syst Evol Microbiol. 55:667-671.
Yamada, T., H. Imachi, A. Ohashi, H. Harada, S. Hanada, Y. Kamagata, and Y. Sekiguchi. 2007. Bellilinea caldifistulae gen. nov., sp. nov. and Longilinea arvoryzae gen. nov., sp. nov., strictly anaerobic, filamentous bacteria of the phylum Chloroflexi isolated from methanogenic propionate-degrading consortia. Int J Syst Microbiol. 57:2299-2306.
Yu, C. P., R. Ahuja, G. Sayler, and K. H. Chu. 2005.Quantitative molecular assay for fingerprinting microbial communities of wastewater and estrogen-degrading consortia. Appl. Environ. Microbiol. 71:1433-44.
Zak, J. C., M. R. Willing, D. L. Moorhead, and H. G. Widman. 1994. Functional diversity of microbial communities: a quantitative approach. Soil Biol. Biochem. 26:1101-1108.
Zhang, X.-X., S.-P. Cheng, C.-J. Zhu, and S.-L. Sun. 2006. Microbial PAH-degradation in soil: degradation pathways and contributing factors. Pedosphere. 16: 555-565.
Zuckerkandl, E., and L. Pauling. 1965. Molecules as documents of evolutionary history. J. Theor. Biol. 8:357-366.
陳柏州,2004,以人工溼地淨化水質之研究,國立高雄第一科技大學環境與安全衛生工程系碩士論文
Acta Genetica Sinica,30卷8期,2003。
Biology of Wastewater Treatment. Gray, N. F. 2004. 2e.
Methods for the examination of organismal diversity in soils and sediments. Edited by Geoffrey S. Hall ; project coordinators, Pierre Lasserre and David L. Hawksworth 1996.
Wetlands. William J. Mitsch, James G. Gosselink. 2000.
土壤污染與復育技術槪論,徐貴新、林景行編著。
土壤染防治學,張仁福著,高雄復文出版,麗文文化發行,87年。
水質分析 (Water quality analysis),江漢全著,三民書局,93年。
高雄縣政府環境保護局,高雄縣舊鐵橋人工濕地效益評估計畫期末報告,97年。
教育部生態工法暨生物多樣性人才培育計畫,生態工法及生物多樣性研討會論文集,96年。
溼地生物多樣性硏討會論文集 (Wetland biodiversity : proceedings of the symposium of biodiversity in wetlands) ,蔣鎮宇、許再文編輯,農委會特有生物中心,89年。
濕地.臺灣 : 總統府文化臺灣特展系列專輯,方偉宏等參與展出、撰文,行政院文化建設委員會,95年。
濕地生態工程,陳有祺著,滄海書局,94年。
環工指標微生物,鄭育麟,復文書局,第四版1997。
環境檢測方法,行政院環境保護署環境檢驗所,86年。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.137.181.52
論文開放下載的時間是 校外不公開

Your IP address is 3.137.181.52
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code