Responsive image
博碩士論文 etd-0714108-175707 詳細資訊
Title page for etd-0714108-175707
論文名稱
Title
抽絲塔製程摻鉻光纖螢光動態特性之研究
Dynamical Fluorescent Characteristic of Broadband Cr-doped Fibers by Drawing Tower
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
89
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-06-21
繳交日期
Date of Submission
2008-07-14
關鍵字
Keywords
螢光動態、摻鉻光纖、抽絲塔
drawing tower, cr-doped fiber, dynamical fluorescent characteristic
統計
Statistics
本論文已被瀏覽 5699 次,被下載 25
The thesis/dissertation has been browsed 5699 times, has been downloaded 25 times.
中文摘要
  目前摻鉻光纖的製程以雷射基座加熱法(LHPG)生長外,另一方法為抽絲塔技術。我們已經成功的利用管中棒(Rod in Tube, RIT)方法研製成光纖預型體,再利用商用抽絲塔加上負壓控制的製程,製作出具有300 nm超寬頻之摻鉻光纖(Cr-doped fiber, CDF)。此製程的摻鉻光纖的特性,包括纖芯直徑可達16μm、纖芯直徑的均一性、纖芯之非圓對稱性(< 3%)及提升自發性螢光譜線達300 nm頻寬和nW/nm等級的功率密度。
  為了有效提升摻鉻光纖的品質,本研究對摻鉻光纖進行動態螢光特性的分析,量測其光子的生命週期(Lifetime),並配合元素成份定性及定量的量測和微結構的觀察。摻鉻光纖光子生命週期及元素含量分別約為1.5 μs以下及 510 μg/g,遠低於原始&#25530;鉻晶棒之4.5 μs與 2500 μg/g。而在&#25530;鉻光纖的微結構觀察上,發現在纖芯處有高密度結晶奈米顆粒之結構,並形成高密度奈米顆粒聚集成微米之團簇(clusters)結構,故造成明顯之散射損耗現象,因此研製&#25530;鉻光纖有很大的傳輸損耗,約為 1.17 dB/cm。目前所量測摻鉻光纖之自發螢光功率密度僅達nw/nm。
  由光學和材料特性分析的結果得知在以抽絲塔製程進行&#25530;鉻光纖之生長時,須降低製程溫度及抽絲速度,以其得到較好之纖芯結晶結構,及減少傳輸損耗,提升摻鉻光纖的品質,增加自發螢光功率密度。期改善後之摻鉻光纖便極具潛力,可研製成涵蓋\整個1.2到1.55 μm的光纖通訊波段單一之光纖放大器,成為新一代的超寬頻光纖放大器。
Abstract
  Currently, The Cr-doped fibers are grown by LHPG method or drawing-tower technique. The Cr-doped YAG preform was firstly fabricated by a rod-in-tube method. We have successfully fabricated the Cr-doped fibers by using a commercial drawing-tower technique. By employing a negative pressure control in drawing-tower technique on the YAG preform, the Cr-doped fibers with a better core circularity and uniformity, and good interface between core and cladding were fabricated. The core non-circularity was smaller than 3%, the spontaneous emission spectrum showed the bandwidth that approach to 300 nm, and the output power density level have promoted to a few nW/nm.
 In this study, we focused on the analysis of dynamic fluorescent characteristics of Cr-doped fibers in order to improve the quality effectively. The lifetimes of Cr4+ fluorescence and concentration of Cr ions were 1.5 μs and 510 μg/g, respectively.The concentration of the Cr ions was less than the Cr-doped fibers grown by LHPG method. The high-resolution micrograph showed that there was nano-crystalline structure in the core surrounded by SiO2 amorphous matrix. These nano-particles gathered at the core and formed micrometer clusters, and therefore resulted in high scattering loss around 1.17dB/cm.
  In order to improve the Cr-doped fibers quality, reduce propagation loss, and promote the spontaneous emission power density. We have to decrease the temperature and drawing speed in the drawing process Therefore, the new Cr-doped fibers may have the potential for being used as a new generation broadband fiber amplifier to cover the bandwidth of the entire 1.3-1.6 μm range which exhibit 300 nm usable spectral bands.
目次 Table of Contents
內 容 目 錄
中文摘要
英文摘要
誌 謝
內容目錄 I
圖目錄 III
表目錄 VI
第一章 緒 論 1
第二章 摻鉻晶體光纖的特性 10
2.1 摻鉻晶體特性分析 10
2.2 摻鉻晶體的能階模型與吸收及放射頻譜 16
第三章 &#25530;鉻晶體光纖之研製 21
3.1 摻鉻晶纖生長法 21
3.2 抽絲塔製造摻鉻光纖 24
3.2.1 預型體製程 24
3.2.2 抽絲製程 25
第四章 摻鉻光纖之特性量測 30
4.1 摻鉻光纖端面之研磨拋光 30
4.2 摻鉻光纖之折射率量測 31
4.3 摻鉻光纖之自發輻射頻譜 36
4.4 摻鉻光纖之EPMA成分分析 43
4.5 感應耦合電漿質譜儀微量元素測定 45
4.6 摻鉻光纖之損耗量測 49
4.7 摻鉻光纖之微結構觀察 54
4.8 動態螢光生命週期量測 60
第五章 結論與未來目標 69
5.1 結論 69
5.2 討論 71
參考文獻 73
參考文獻 References
[1]  J. George, “Ethernet in the First Mile Optical Architectures and Fibers,”  IEEE EFM Meeting, Hilton Head NC, Mar. 2001.
[2] D. W. Hewak, “Progress towards a 1300 nm fiber amplifier,” New Developments in Optical Amplifiers (Ref. No. 1998/492), IEE Colloquium, vol.26,pp.12/1-12/5,1998.
[3]  S. Q. Man, H. W. Liu, Y. H. Wong, E. Y. B. Pun, and P. S. Chung, “Tellurite glasses for 1.3 μm optical amplifier,” Lasers and Electro-Optics Society (LEOS) Annual Meeting, vol. 1, pp.196-197 , 1998.
[4]  S. Aozasa, H. Masuda, H. Ono, T. Sakamoto, T. Kanamori, Y. Ohishi, and M. Shimizu, “1480-1510 nm-band Tm doped fiber amplifier (TDFA) with a high power conversion efficiency of 42 %,” Optical Fiber Communication (OFC) Conference, vol. 4, pp. PD1, 2001.
[5] Y. Miyajima, T. Kamukai, and T. Sugawa, “ 1.31-1.36 μm optical amplification in Nd3+ -doped fluorescent fiber,” Electron. Lett., vol. 26, pp. 194-195, 1990.
[6]  E. Desurvire, “Erbium-Doped Fiber Amplifiers: Principles and Applications,” New York: Wiley, 1994, Ch. 4.
[7]  S. Shimada and H. Ishio, “Optical Amplifiers and their Applications,” New York: Wiley, 1994, Ch. 2.
[8]  Y. Shi and O. poulsen, “High-power broadband single mode Pr3+-doped fiber superfluoresence light source,” Electron. Lett., vol. 29, no. 22, pp. 1945-1946, 1993.
[9]  R. S. Quimby, B. N. Samson, B.G. Aitken, “Improved efficiency of Pr-doped sulfide fiber amplifier using a dual pump scheme,” Lasers and Electro-Optics, Conference(CLEO 2000), CWJ5, pp. 285 – 286, May 2000.
[10] T. Kasamatsy, Y. Yano, and H. Seller, “1.50-μm-band gain-shifted thulium-doped fiber amplifier with 1.05- and 1.56-μm dual-wavelength pumping,” Opt. Lett. 24, pp. 1684-1686, 1999.
[11]  S. Aozasa, H. Masuda, H. Ono, T. Sakamoto, T. Kanamori, Y. Ohishi, and M. Shimizu, “1480-1510 nm-band Tm doped fiber amplifier (TDFA) with a high power conversion efficiency of 42 %,” Optical Fiber Communication (OFC) Conference, Vol. 4, pp. PD1, 2001.
[12]  M. J. Connelly, “Semiconductor Optical Amplifiers, ”Kluwer Academic Press,2002.
[13]  N. Islam, “Raman amplifiers for telecommunications,” IEEE J. Quant. Electron., vol. 8, no. 3, pp. 548-559, May/June 2002.
[14]  M. V. Iverson, J. C. Windscheif, and W. A. Sibley, “Optical parameters for the MgO:Ni2 + laser system,” Appl. Phys. Lett. 36, 183-184, 1980.
[15]  T. Suzuki and Y. Ohishi, “Broadband 1400 nm emission from Ni2+ in zinc—alumino—silicate glass,” Appl. Phys. Lett. 84, 3804-3806, 2004.
[16]  S. Tanabe and X. Feng, “Temperature variation of near-infrared emission from Cr4+ in aluminate glass for broadband telecommunication,” Appl. Phys. Lett. 77, 818-820, 2000.
[17]  C. Batchelor, W. J. Chung, S. Shen, and A. Jha, “Enhanced room-temperature emission in Cr4+ ions containing alumino-silicate glasses,” Appl. Phys. Lett. 82, 4035-4037, 2003.
[18]  C. Y. Lo, K. Y. Huang, J. C. Chen, C. Y. Chuang, C. C. Lai, S. L. Huang, Y. S. Lin, and P. S. Yeh, “Double-clad Cr4+:YAG crystal fiber amplifier,” Opt. Lett. 30, 129-131, 2005.
[19]  J. C. Chen, C. Y. Lo, K. Y. Huang, F. J. Kao, S. Y. Tu, and S. L. Huang, “Fluorescence mapping of oxidation state of Cr ions in YAG crystal fibers,” J. Cryst. Growth 274, 522-529, 2005.
[20]  Y. C. Huang, Y.K. Lu, J.C. Chen, Y.C. Hsu, Y.M. Huang, S.L. Huang, and W.H. Cheng, Broadband emission from Cr-doped fibers fabricated by drawing tower,” Opt. Exp. 14, 8492-8497, 2006
[21]  Y. C. Huang, J.S. Wang, Y.K. Lu, W.K. Liu, K.Y Huang, S.L. Huang, and W.H. Cheng, “Preform fabrication and fiber drawing of 300 nm broadband Cr-doped fibers,” Opt. Exp. 15, 14382-14388, 2007
[22]  Y.C. Huang, J.S. Wang, Y.K. Lu, C.T. Wu, S.L. Huang, W.H. Cheng, “Fabrication of 300-nm Cr-Doped Fibers Using Fiber Drawing with Pressure Control,” OFC, San Diego, CA, pp. JWA1, Feb., 2008.
[23]  Cz. Koepke, K. Wisniewski, and M. Grinberg, “Excited state spectroscopy of chromium ions in various valence states in glass,” J. of Alloys and compounds, Vol. 341, pp. 19-27, 2002.
[24]  U. Hommerich, X. Wu, and V. R. Davis, “Demonstration of room-temperature laser action at 2.5 m from Cr2+:Cd0.85Mn0.15Te,” Opt. Lett., Vol. 22, pp. 1180-1182, 1997.
[25]  S. B. Mirov, V. V. Fedorov, K. Graham, and I. S. Moskalev “CW and pulsed Cr2+:ZnS and ZnSe microchip laser ,” Technical Digest, Lasers and Electro-Optics, pp. 120-121, 2002.
[26]  J. McKay, K. L. Schepler and G. C. Catella, “Efficient grating-tuned mid-infrared Cr2+:CdSe laser,” Optics Letters, Vol. 24, No. 22 pp. 1575-1577,1999.
[27]  S. Kuck, K. Petermann, and G. Huber, “Spectroscopic investigation of the Cr4+-center in YAG, “OSA Proceedings on Advanced Solid-State Lasers, Vol. 10, pp. 92-94, 1991.
[28]  A. A. Kaminskii, “Laser crystal,” 1st ed, Springer-Verlag Berlin Heidelberg New York, p. 241, 381, 382, 1981.
[29]  S. Aoshima, H. Itoh, K. Kuroyanagi, Y. Takiguchi, Y. Ohbayashi, I. Hirano, and Y. Tsuchiya, “Tunable picosecond all solid-state Cr:LiSAF Laser,” IEEE, IMCT’94, pp. 937-940, 1994.
[30]  Y. K. Kuo, M. F. Huang, and M. Bimbaum, “Tunable Cr4+:YSO Q-switched Cr:LiCAF laser,” J. of Quantum Electron., Vol. 31, No. 4, pp. 657-663, 1995.
[31]  T. Fujii, M. Nagano, and K. Nemoto, “Spectroscope and laser oscillation characteristics of high Ce4+-doped forsterite,” J. of Quantum Electron., Vol. 32, No. 8, pp. 1497-1503, 1996.
[32]  S. Kuck, J. Koetke, K. Petermann, U. Pohlmann, and G. Huber, “Spectroscopic and laser studies of Cr4+:YAG and Cr4+:Y2SiO5,” SOA Proceedings on Advanced Solid-State Lasers, Vol. 15, pp. 334-338, 1993.
[33]  黃光瑤, “摻鉻釔鋁石榴石晶體光纖之超寬頻自發輻射放大光源之研製,” 碩士畢業論文, 國立中山大學, 2003.
[34]  A. Sennaroglu, “Analysis and optimization of lifetime thermal loading in continuous-wave Cr4+-doped solid-state laser,” J. Opt. Soc. Am., Vol. 18, No. 11, pp. 1578-1586, 2001.
[35]  H. Eilers, W. M. Dennis, W. M. Yen, S. Kuck, K. Peterman, G. Huber, and W. Jia, “Performance of a Cr:YAG laser,” IEEE J. of Quantum Electron., vol. 29, p. 2508. 1993.
[36]  E. Snitzer and R. Tummineli, “SiO2-clad fibers with selectively volatilized soft-glass cores,” Opt. Lett. 14, 757-759, 1989.
[37]  黃茂闊, “雙光子共焦顯微鏡和顯微光譜之應用:氮化鎵銦發光二極體的光致電流影像和顯微光譜,” 碩士畢業論文, 國立中山大學, 2000.
[38]  陳建誠, “雙纖衣&#25530;鉻釔鋁石榴石晶體光纖之螢光光譜研究, ” 博士畢業論文, 國立中山大學, 2006.
[39]  黃翊中, “抽絲塔研製超寬頻摻鉻光纖之製程與特性,” 博士畢業論文, 國立中山大學, 2008.
[40]  翁瑞麟, “微波輔助產生揮發性基質化合物結合感應偶合電漿質譜儀於硒及鍺粉末和矽及石英中微量不純物分析之應用, ”碩士畢業論文, 國立中山大學, 2004.
[41]  黃昱銘, “抽絲塔製程之摻鉻光纖, ” 碩士畢業論文, 國立中山大學, 2006.
[42]  王志欽, “一維奈米碳材結構分析與模擬之研究, ” 碩士畢業論文, 國立成功大學, 2003.
[43]  賴建智, “摻鉻釔鋁石榴石晶體光纖雷射之研製與其微結構分析, “ 碩士畢業論文, 國立中山大學, 2004.
[44]  A.Yariv, Optical Electronics in Modern Communications(Oxford, 1997).
[45]  何文博,” 時域最小平方法萃取等效電路模型之研究, “ 碩士畢業論文, 國立中山大學, 2000.
[46]  B. Lipavsky, Y. Kalisky, Z. Burshtein, Y. Shimony and S. Rotman, “Some optical properties of Cr4+-doped crystals, ” Optical Materials 13 (1999) 117-127.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.189.2.122
論文開放下載的時間是 校外不公開

Your IP address is 18.189.2.122
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code