Responsive image
博碩士論文 etd-0714108-214033 詳細資訊
Title page for etd-0714108-214033
論文名稱
Title
使用位移式拋物線內插方法之無唯讀記憶體直接數位頻率合成器與以矽基底整合光偵測器及轉阻放大器之光電積體電路元件
A ROM-less DDFS Using A Parabolic Polynomial Interpoltion Method with An Offset Adjustment and Fabrication of Silcon-based OEIC Comprising Photodetector and Transimpedance Amplifier
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
79
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-06-20
繳交日期
Date of Submission
2008-07-14
關鍵字
Keywords
內插法、直接數位頻率合成器、光電積體電路
DDFS, interpolation method, OEIC
統計
Statistics
本論文已被瀏覽 5632 次,被下載 0
The thesis/dissertation has been browsed 5632 times, has been downloaded 0 times.
中文摘要
本論文包含兩個主題,第一個主題是一種使用位移式拋物線內插方法之無唯讀記憶體直接數位頻率合成器;第二個主題是以矽基底整合光偵測器及轉阻放大器之光電積體電路元件。
在第一個研究主題中,無唯讀記憶體之直接數位頻率合成器使用一位移式拋物線內插方法,係將拋物線方程式加入一個初始相位值,亦即位移(offset),使得可以改善輸出弦波的頻譜純度,並且加入管線化設計用以提升整體電路的工作時脈。
在第二個研究主題中,光電積體電路元件利用互補式金屬-氧化層-半導體(Complementary Metal-Oxide-Semiconductor, CMOS)製程製做出轉阻放大器,並且利用其矽基底,將以III-V族元素所製作的光偵器藉由應力(wafer bound)的方式以混合式積體電路(Hybrid Integrated Circuits)技術整合,藉以降低由異質接面所造成的頻寬的限制。
Abstract
This thesis includes two topics. The first topic is a ROM-less DDFS (Direct Digital Frequency Synthesizer) using a parabolic polynomial in-terpolation method with an offset adjustment. The second one is the de-sign and fabrication of a silicon-based OEIC(optoelectronic integrated circuit) comprising photodetectors and transimpedance amplifiers.
The ROM-less DDFS employs a parabolic polynomial interpola?tion method with an offset adjustment, where an initial phase offset is added into parabolic polynomials. Besides, the pipelining architecture is adopted to improve the speed of the proposed DDFS.
The OEIC uses the hybrid integration technique to integrate the III-V optoelectronic devices (photodetector) and CMOS integrated circuits (transimpedance amplifier) onto the same substrate (silicon substrate) by the wafer bounding technique. With the realization of the hybrid in-tegration, the bandwidth degeneration resulted from the traditional wire bounding can be avoided.
目次 Table of Contents
致謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 概論 1
1.1 研究動機 1
1.1.1 無唯讀記憶體之直接數位頻率合成器 1
1.1.2 光電積體電路 2
1.2 相關技術與文獻探討 3
1.2.1 利用內插方法之無唯讀記憶體直接數位式頻率合成器 3
1.2.2 使用矽基底之光電整合元件 9
1.3 論文架構 11
第二章 使用位移式拋物線內插方法之無唯讀記憶體直接數位頻率合成器 13
2.1 簡介 13
2.2 電路架構 14
2.3 電路設計 15
2.3.1 相位累加器 16
2.3.2 相位頻率轉換器 18
2.3.3 實際電路規格訂定 22
2.3.4 預計規格 23
2.4 電路模擬與晶片量測 24
2.4.1 電路模擬結果 24
2.4.2 晶片實作與量測結果 27
2.5 晶片實作量測之討論 33
第三章 以矽基底整合光偵測器及轉阻放大器之光電積體電路 36
3.1 簡介 36
3.2 電路設計 39
3.2.1 轉阻放大器 39
3.2.2 光偵測器 42
3.2.3 整合佈局規劃 44
3.2.4 預計規格 46
3.3 電路模擬跟晶片量測 46
3.3.1 電路模擬結果 46
3.3.2 晶片實作與量測結果 53
3.4 晶片實作量測之討論 58
第四章 結論與成果 61
參考文獻 63
參考文獻 References
[1] J. Tierney, C. M. Rader, and B. Gold, “A digital frequency syn-thesizer,” IEEE Trans. on Audio and Electroacoustics, vol. AU-19, no. 1, pp. 48-57, Mar. 1971.

[2] G. W. Kent, and N.-H. Sheng, “A high purity, high speed direct digital synthesizer,” in Proc. 49th IEEE Inter. Frequency Control Symp., pp. 207-211, Jun. 1995.

[3] J. Vankka, “Methods of mapping from phase to sine amplitude in direct digital synthesis,” in Proc. 1996 IEEE Inter. Frequency Control Symp., pp. 942-950, June 1996.

[4] E. D. Caro, E. Napoli, and A. G. M. Strollo, “ROM-less direct digital frequency synthesizers exploiting polynomial approxima-tion,” in Proc. 9th Inter. Conference on Electronics, Circuits and Systems, vol. 2, pp. 481-484, Sept. 2002.

[5] A. M. Sodagar, and G. R. Lahihi, “A novel architecture for ROM-less sin-output direct digital frequency synthesizers by using the 2nd-order parabolic approximation,” in Proc. IEEE/EIA Inter. Frequency Control Symp. and Exhibition, pp. 284-289, June 2000.

[6] A. Ashrafi, and R. Adhami, “A direct digital frequency synthe-sizer utilizing quasi-linear interpolation method,” in Proc. of IEEE 37th Southeastern Symp. on System Theory, pp. 114-118, Mar. 2005.

[7] A. Ashrafi, and R. Adhami, “An optimized direct digital frequen-cy synthesizer based on even fourth order polynomial interpola-tion,” 2006 Proc. of the Thirty-Eighth Southeastern Symp. on System Theory, pp. 109- 113, Mar. 2006.

[8] A. Ashrafi, and R. Adhami, “A 13-Bit resolution ROM-less direct digital frequency synthesizer based on a trigonometric quadruple angle formula”, IEEE Tran. on Very Large Scale Integration (VLSI) Systems, vol. 13, no. 9, pp. 1096-1098, Sept. 2005.

[9] J. M. P. Langlois, and D. Al-Khalili, “Low power direct digital frequency synthesizers in 0.18 um CMOS”,in Proc. IEEE Custom Integrated Circuits Conference, pp. 283-286, Sept. 2003.

[10] H. Jafari, A. Ayatollahi, and S. Mirzakuchaki, “A low power, high SFDR, ROM-less direct digital frequency synthesizer,” 2005 IEEE Conf. on Electron Devices and Solid-State Circuits, pp. 829-832, Dec. 2005.

[11] K. Rajabpour Moghaddam, and A. M. Sodagar, M. Teshnelab, “Novel direct digital frequency synthesis architecture based on artificial neural networks,” in Proc. of the 2005 IEEE Inter. Symp. on Signals Circuits and Systems (ISSCS 2005), pp. 793-796, July 2005.

[12] H.-Y. Ko, Y.-C. Wang, and A.-Y. Wu, “Digital signal processing engine design for polar transmitter in wireless communication systems,” in Proc. IEEE Inter. Symp. Circuits and Systems (IS-CAS-2005), pp. 1032-1035, May 2005.

[13] A. N. Mohieldin, A. A. Emira, and E. Sanchez-Sinencio, “A 100-MHz 8-mW ROM-less quadrature direct digital frequency syn-thesizer,” IEEE J. of Solid-State Circuits, vol. 37, no. 10, pp. 1234-1243, Oct. 2002.

[14] D. Caro, and A. G. M. Strollo, “High-performance direct digital frequency synthesizers in 0.25um CMOS using dual-slope ap-proximation,” IEEE J. of solid-state Circuits, vol. 40, no 11, pp. 2220-2227, Nov. 2005.

[15] http://techresearch.intel.com/articles/Tera-Scale/1448.htm

[16] A. W. Fang, H. Park, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers, “A continuous-wave hybrid AlGaInAs–silicon eva-nescent laser,” IEEE Photonics Technology Letters, vol. 18, no. 10, pp. 1143-1145, May 2006.

[17] H. Park, A. W. Fang, S. Kodama, and J. E. Bowers, “Hybrid Sili-con Evanscent Laser Fabricated with a Silicon Waveguide and III-V Offset Quantum Wells, “ Optics Express, vol. 13, no.23, pp. 9460-9464, Nov. 2005.

[18] S. M. Park, and H.-J. Yoo, “1.25-Gb/s regulated cascode CMOS transimpedance amplifier for gigabit ethernet applications,” IEEE J. Solid-State Circuits, vol. 39, pp. 112-121, Jan. 2004.

[19] S.-H. Kim, C.-U. Kam, and J.-H. Lee, “Design of 2.5Gb/s tran-simpedance amplifier using CMOS technologies, “ IEEE Inter. Conf. on Advanced Communication Technology, vol. 3, pp. 1825-1828, Feb. 2005.

[20] S.-J. Sim, J. Park, and S. M. Park, “A 1.8V, 60dB 11 GHz tran-simpedance amplifier with strong immunity to input parasitic ca-pacitance, “ 2006 IEEE Inter. Symp. on Circuits and Systems, pp. 5483-5487, May 2006.

[21] B. Razavi, “Design of analog CMOS integrated circuit,” McGraw Hill, International Edition, 2001.

[22] X. Yu, F. F. Dai, Y. Shi, and R. Zhu, “2 GHz 8-bit CMOS ROM-less direct digital frequency synthesizer,” IEEE Inter. Symp. on Circuits and Systems, 2005. (ISCAS 2005) , vol. 5, pp. 4397-4400, May 2005.

[23] A. N. Mohieldin, A. A. Emira, and E. Sanchez-Sinencio, “A 100-MHz 8-mW ROM-less quadrature direct digital frequency syn-thesizer,” IEEE J. of Solid-State Circuits, vol. 37, no. 10, pp. 1234-1243, Oct. 2002.

[24] J.-M. Huang, C.-C. Lee, and C.-C. Wang, “A ROM-less Direct Digital Frequency Synthesizer Based on 16-Segment Parabolic Polynomial Interpolation,” in Proc. 15th Inter. Conference on Electronics, Circuits and Systems (ICECS), Paper ID:4486, ac-cepted, Sep. 2008.

[25] J.-M. Huang, C.-C. Wang, and Y.-J. Chiu, “A CMOS Opto-electronic Single Chip Using the Hybrid Scheme for Optical Re-ceivers,” Microwave and Optical Technology Letters, Paper ID:MOP23693, accepted, Sep. 2008.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.147.104.248
論文開放下載的時間是 校外不公開

Your IP address is 3.147.104.248
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code