Responsive image
博碩士論文 etd-0714109-181658 詳細資訊
Title page for etd-0714109-181658
論文名稱
Title
雷射近場波前重建應用於光纖透鏡之研究
A Study of Wavefront Reconstruction Applied to Lensed Fiber
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
98
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-06
繳交日期
Date of Submission
2009-07-14
關鍵字
Keywords
波前、光纖透鏡
lensed fiber, wavefront
統計
Statistics
本論文已被瀏覽 5638 次,被下載 0
The thesis/dissertation has been browsed 5638 times, has been downloaded 0 times.
中文摘要
本論文透過雷射近場波前重建來探討雷射與光纖透鏡的耦合機制。雷射與光纖的耦合在雷射近場範圍,為了探討雷射與光纖的耦合機制,需先量測雷射近場光場(包括能量與相位)。雷射近場能量分佈可藉由顯微物鏡與CCD攝影機測得,而雷射近場相位分佈,由於雷射光點尺寸太小(~μm),相位不易直接測量,本文利用相位補償演算法,取兩組雷射近場能量平面的分佈,計算出雷射近場的相位分佈,結合雷射近場能量分佈與相位分佈,即可重建雷射近場光場。光纖透鏡係由研磨與融燒方式製作而成,將光纖透鏡與波長980nm的二極體雷射進行耦合,透過量測建立光纖透鏡表面形狀模型,並計算雷射近場光場經過光纖透鏡之後的光場,配合光纖透鏡與980nm二極體雷射的耦合結果,說明耦合機制。
透過光束傳播法,我們發現光纖透鏡在雷射與光纖的耦合機制中,主要作用在於改變雷射近場相位分佈,將雷射近場相位從較彎曲的曲面轉變為近似平面波相位的平緩曲面,提高雷射與光纖的耦合效率。其中以縱軸曲率半徑為2.7μm的橢圓錐形光纖透鏡最能將雷射光場相位轉變為類似平面波相位的平緩曲面,其經過光纖透鏡之後的雷射近場相位與平面波相位的差異為0.283 radian,耦合效率是76%,為實驗中耦合效率最高、使雷射相位最接近平面波相位的光纖透鏡。
Abstract
Applying laser near-field wavefront reconstruction, we have discussed the coupling mechanism of the laser and optical lensed fiber. The coupling of the laser and optical lensed fiber is in the near-field range. In order to discuss the coupling mechanism of the laser and optical lensed fiber, we had to measure laser beam in near-field(including intensity and phase).The laser near-field intensity could be measured directly with an objective and a CCD camera. Because the laser spot size was too small, it was difficult to measure the laser near-field phase directly. Therefore, we used the phase retrieval algorithms, intercepting two groups of laser near-field intensity distribution plane to calculate laser near-field phase distribution. Combining laser near-field intensity distribution and phase distribution, we could rebuild laser beam in near-field. Lensed fiber is fabricated by means of grinding and fusing. We measured the coupling efficiency of the lensed fiber and laser diode(the wavelength of laser beam is 980nm), and simulated the surface of the lensed fiber with software. Applying beam propagation method, we could calculate the laser near-field distribution which propagated through lensed fiber, and cooperate the coupling efficiency of the lensed fiber and laser diode to explain the coupling mechanism.
In summary, we discovered that the lensed fiber in the course of the coupling mechanism of the laser and optical lensed fiber changed the laser near-field phase from a bending curved surface into a flat curved surface just like the phase of plane wave, and it also improved the coupling efficiency.
目次 Table of Contents
中文摘要.....................................................................................................I
Abstract......................................................................................................II
致謝..........................................................................................................III
內容目錄..................................................................................................IV
圖表目錄..................................................................................................VI
第一章 緒論..............................................................................................1
1.1 研究背景.....................................................................................1
1.2 研究動機.....................................................................................3
1.3 文獻回顧.....................................................................................4
1.3.1 高斯光束..........................................................................4
1.3.2 繞射理論..........................................................................7
1.4 論文架構.....................................................................................9
第二章 理論基礎....................................................................................10
2.1 雷射特性...................................................................................10
2.2 模態耦合理論...........................................................................13
2.3 相位補償演算法.......................................................................15
2.4 光束傳播法...............................................................................18
第三章 光纖透鏡製作與量測................................................................22
3.1 光纖透鏡製作...........................................................................22
3.1.1 光纖研磨機台................................................................22
3.1.2 光纖透鏡製程................................................................24
3.2 光纖透鏡量測...........................................................................31
3.2.1 光纖透鏡外型量測........................................................31
3.2.2 耦光效率量測................................................................32
第四章 雷射近場重建與數值模擬........................................................43
4.1 雷射近場重建...........................................................................43
4.1.1 雷射近場能量分佈........................................................43
4.1.2 雷射近場相位分佈........................................................51
4.2 數值模擬...................................................................................56
4.2.1 光束傳播法....................................................................56
4.2.2 模態耦合與光纖透鏡....................................................60
第五章 結論與未來工作........................................................................76
5.1 結論...........................................................................................76
5.2 未來工作...................................................................................77
參考文獻..................................................................................................78
參考文獻 References
1. E. Desurvire, J. R. Simpson, and P. C. Becker, “High-Gain Erbium- Doped Traveling-Wave Fiber Amplifier”, Optics Letters, vol. 12, pp. 888-890, 1987.

2. S. B. Poole, D. N. Payne, R. J. Mears, M. E. Fermann, and R. I. Laming, “Fabrication and Characterization of Low-Loss Optical Fibers Containing Rare-Earth Ions”, Journal of Lightwave Technology, vol.LT-4, pp. 870-876, 1986.

3. W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm” , Journal of Lightwave Technology, vol.9, pp.234-250, 1991.

4. M. Yamada, M. Shimizu, T. Takeshita, M. Okayasu, M. Horiguchi, S. Uehara, and E. Sugita, “Er3+-Doped Fiber Amplifier Pumped by 0.98μm Laser Diodes”, IEEE Photonics Technology Letters, vol.1, pp.422-424, 1989.

5. M. Yamada, M. Shimizu, M. Okayasu, T. Takeshita, M. Horiguchi, S. Uehara, Y. Tachikawa, and E. Sugita, “Noise Characteristics of Er3+ -Doped Fiber Amplifiers Pumped by 0.98 and 1.48μm Laser Diodes”, IEEE Photonics Technology Letters, vol.2, pp.205-207, 1990.

6. H. M. Presby and C. R. Giles, “Asymmetric fiber microlenses for efficient coupling to elliptical laser beams”, IEEE Photonics Technology Letters, vol. 5, pp. 184-186, 1993.

7. R. E. Smith, C. T. Sullivan, G. A. Vawter, G. R. Hadley, J. R. Wendt, M. B. Snipes, and J. F. Klem, “Reduced coupling loss using a tapered adiabatic- following fiber coupler”, IEEE Photonics Technology Letters, vol. 8, pp.1052-1054, 1996.

8. Y. Fu, N. K. A. Bryan, and O. N. Shing “Integrated micro-cylindrical lens with laser diode for single-mode fiber coupling,” IEEE Photonics Technology Letters, vol. 12, pp.1213-1215, 2000.

9. S. Y. Huang, C. E. Gaebe, K. A. Miller, G. T. Wiand, and T. S. Stakelon, “High coupling optical design for laser diodes with large aspect ratio”, IEEE Transactions on Advanced Packaging, vol. 23, pp.165-169, 2000.

10. V. S. Shah, L. Curtis, R. S. Vodhanel, D. P. Bour, and W. C. Yang, “Efficient power coupling from a 980-nm, broad-area laser to a single-mode fiber using a wedge-shaped fiber endface”, Journal of Lightwave Technology, vol. 8, pp. 1313-1318, 1990.

11. H. M. Presby and C. R. Giles, “Asymmetric fiber microlenses for efficient coupling to elliptical laser beams”, IEEE Photonics Technology Letter, vol. 5, pp. 184-186, 1993.

12. C. A. Edwards, H. M. Presby, and C. Dragone, “Ideal microlens for laser to fiber coupling”, Journal of Lightwave Technology, vol. 11, pp.252-257, 1993.

13. H. Yoda and K. Shiraishi, “A new scheme of lensed fiber employing a wedge-shaped graded-index fiber tip for the coupling between high- power laser diodes and single-mode fiber”, Journal of Lightwave Technology, vol. 19, pp. 1910-1917, 2001.

14. H. Yoda and K. Shiraishi, “Cascaded GI-fiber chips with a wedge- shaped end for the coupling between an SMF and a high-power LD with large astigmatism”, Journal of Lightwave Technology, vol. 20,pp. 1545-1548, 2002.

15. Y. Irie, J. Miyokawa, A. Mugino and T. Shimizu, “Over 200 mW 980 nm pump laser diode module using optimized high-coupling lensed fiber”, in Tech. Dig. OFC/IOOC'99, San Diego, CA, pp. 238-240, 1999.

16. S. M. Yeh, Y. K. Lu, S. Y. Huang, H. H. Lin, C. H. Hsieh, and W.H.Cheng, “A novel scheme of lensed fiber employing a quadrangular- pyramid-shaped fiber endface for coupling between high-power laser diodes and single-mode fibers”, Journal of Lightwave Technology, vol.22, pp. 1374-1379, 2004.

17. S. M. Yeh, S. Y. Huang, and Wood-Hi Cheng, “A new scheme of conical-wedge-shaped fiber endface for coupling between high-power laserdiodes and single-mode fibers”, Journal of Lightwave Technology, vol. 23, pp. 1781-1786, 2005.

18. Y. K. Lu, Y. C. Tsai, Y. D. Liu, S. M. Yeh, C. C. Lin, and W. H. Cheng, “Asymmetric elliptic-cone- shaped microlens for efficient coupling to high-power laser diodes”, Optics Express, vol. 14, pp. 1434-1442, 2006.

19. 林啟中, “非軸對稱橢圓錐光纖透鏡之研製與特性”, 碩士論文, 2007.

20. A. Yariv, “Optical electronics in modern communication”, Oxford university press, Ch. 2, 1997.

21. E. Hecht, “Optics”, Ch. 11, 4th edition, 2002.

22. S. Teich, “Fundamentals of Photonics”, Canada, Canada, Wiley Interscience, Ch. 16, 1991.

23. G. Keiser, “Optical Fiber Communications”, Third edition, Ch.4, 2000.

24. R. W. H. Engelmann, D. Kerps, G. Hom, D.E. Ackley, “A gain-guided- stripe diode laser with a single longitudinal mode, high kink power, and minimal beam distortion”, Electron Devices Meeting, 1982 International, vol. 28, pp. 350-353,1982.

25. F. H. Peters and D. T. Cassidy, “Model of the spectral output of gain-guided and index-guided semiconductor diode lasers”, J. Opt. Soc. Am. B, vol. 8, pp. 99-105 ,1991.

26. H. Mori, “Ridge waveguide without high refractive index layer: multilayer side cladded ridge waveguide”, Applied Optics, vol. 17, pp.105-108, 1978.

27. M. C. Amann and B. Stegmuller, “Calculation of the effective refractive- index step for the metal-cladded-ridge-waveguide laser”, Applied Optics, vol. 20, pp. 1483-1486, 1981.

28. H. Kogelink, “Coupling and conversion coefficients for optical modes in quasi-optics”, Microwave Research Institute Symposia Series, New York Polytechnic Press, vol. 14, pp. 333-347, 1964.

29. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures”, Optik 35, pp. 237-246, 1972.

30. J. R. Fienup, “Phase retrieval algorithms:a comparison”, Applied Optics, vol. 21, pp. 2758-2769,1982.

31. S. Matsuoka and K. Yamakawa, “Wavefront reconstruction from intensity measurements using fresnell phase retrieval method”, Japanese Journal of Applied Physics, vol.38, pp. 1183-1185, 1999.

32. T. C. Poon and T. Kim, “Engineering Optics With MATLAB”, CH.3, 2006.

33. User Guide for ULTRAPOL 1200 Series Polishing Bases.

34. 劉育達, “非對稱光纖端面加工機構設計之研究”, 碩士論文, 國立中山大學機械與機電工程研究所, 2006.

35. 呂昱寬, “波前量測應用於雷射與光纖耦合之研究”, 博士論文, 國立中山大學光電工程研究所, 2008.

36. Duma Optronics LTD, Oren Center, 1st Hazait Street P.O. Box 3370 Nesher 20306, ISRAEL.

37. W. D. Herzog, M. S. U Unlu, B. B. Goldberg, and G. H. Rhodes, “Beam divergence and waist measurements of laser diodes by near-field scanning optical microscopy”, Applied Physics Letter, vol.70, pp. 688-690, 1997.

38. Copyright©1989-2007,Consortium Scilab (INRIA, ENPC).

39. 葉斯銘, “橢圓光纖微透鏡之研究”, 博士論文, 國立中山大學光電工程研究所, 2006.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.17.155.88
論文開放下載的時間是 校外不公開

Your IP address is 3.17.155.88
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code