Responsive image
博碩士論文 etd-0714109-192732 詳細資訊
Title page for etd-0714109-192732
論文名稱
Title
大鼠延腦鼻端腹外側核PI3K,Akt及PKA在美文松中毒腦幹死亡模式所扮演之角色
Roles of PI3K, Akt and PKA at Rostral Ventrolateral Medulla in a Mevinphos Intoxication Model of Brain Stem Death
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
168
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-07
繳交日期
Date of Submission
2009-07-14
關鍵字
Keywords
腦幹死亡、有機磷、美文松
PKA, Akt, PI3K, mevinphos
統計
Statistics
本論文已被瀏覽 5752 次,被下載 1316
The thesis/dissertation has been browsed 5752 times, has been downloaded 1316 times.
中文摘要
延腦鼻端腹外側核(rostral ventrolateral medulla; RVLM)是一個在腦幹死亡的過程中,可以反映出腦幹調控心血管能力的“生與死”訊號的神經核區。因此,RVLM是一個適合探討腦幹死亡過程中細胞分子機制的神經核區。由於在台灣每年有許多有機磷中毒的案例發生,所以我們利用大鼠的美文松(一種有機磷農藥)中毒模式來研究腦幹死亡的機制。本篇論文想要探討以下兩個假設,第一個假設是在美文松中毒所引起的腦幹死亡模式中,是否透過刺激RVLM內phosphoinositide 3-kinases (PI3K)/Akt/phosphatase and tensin homologue deleted on chromosome ten (PTEN)訊息傳遞路徑,並藉由核轉錄因子(NF-κB)的活化來促進一氧化氮合成酶第一亞型(nitrict oxide synthase I; NOS I)或是第二亞型(NOS II)的表現?第二個假設是RVLM內cyclic adenosine monophosphate-dependent protein kinase A (PKA)是否透過不經由蕈毒鹼受體(muscarinic receptor)活化的訊息傳遞路徑參與在美文松中毒所引起的心血管反應?
我們以Sprague-Dawley品系大鼠為實驗對象,實驗結果顯示,當微量注射美文松(10 nmol)至大鼠的RVLM中會誘發RVLM內NF-κB,PI3K,Akt與PTEN的活性增加,以及NOS II與過亞硝酸根(peroxynitrite)的表現增加。當我們阻斷RVLM內NF-κB, PI3K或是Akt的活性後,發現能有意義的加強並延長“生與死”訊號在一開始的增加,以及恢復美文松所引起的低血壓現象,並且能夠抑制美文松所誘導的NOS II與nitrotyrosine的表現。另外,當我們阻斷了RVLM內PI3K或Akt之後,發現亦能夠阻止美文松所誘發的NF-κB活化。然而,當我們阻斷PTEN的功能後,反而有意義地減少美文松在一開始所引起的“生與死”訊號的增加,以及減少美文松誘發的Akt活化。因此,我們認為在RVLM內PI3K/Akt訊息傳遞路徑在我們的美文松中毒引起的腦死模式裡扮演“pro-death”的角色,並且是透過增進NF-κB的活化,來促進RVLM內NOS II與peroxynitrite的表現。然而,PTEN在這個過程中扮演著拮抗者的角色。
在第二個假設探討中,當我們微量注射美文松至大鼠的RVLM內,會誘發RVLM內PKA活性有意義地增加;然而,合併注射美文松與蕈毒鹼受體的抑制劑之後,並不影響美文松誘導的PKA的活化。當我們阻斷RVLM內PKA的活性後,發現能有意義地減少美文松在一開始所引起的“生與死”訊號的增加,並且能夠抑制美文松所誘導的NOS I的表現。因此,我們認為在RVLM內,不需要蕈毒鹼受體活化的PKA在美文松中毒引起的腦死模式裡扮演“pro-life”的角色,並且是透過增進RVLM內NOS I與protein kinase G(PKG)的表現來調控美文松引起的心血管反應。
本篇論文證實了美文松同時會引起不同的機制,藉由個別刺激muscarinic receptor-independent/PKA以及PI3K/Akt/NF-κB路徑來調控NOS I 與NOS II的表現,並引起在“pro-life”與“pro-death”時期的心血管反應。本篇論文在腦幹死亡過程中,腦幹對心血管調控的機制提供了進一步的細胞分子層次探討,並且對於未來有機磷中毒與腦幹死亡治療方法與策略,提供了新的思維。
Abstract
As the origin of a “life-and-death” signal that reflects central cardiovascular regulatory failure during brain stem death, the rostral ventrolateral medulla (RVLM) is a suitable neural substrate to evaluate the cellular mechanism of this fateful phenomenon. Based on a clinically relevant animal model that employed the organophosphate pesticide mevinphos (Mev) as the experimental insult, this study evaluated two hypotheses. First, transcriptional upregulation of nitric oxide synthase I or II (NOS I or II) gene expression by nuclear factor-κB (NF-κB) on activation of phosphoinositide 3-kinases (PI3K)/Akt/phosphatase and tensin homologue deleted on chromosome ten (PTEN) cascade in the RVLM underlies brain stem death. Second, muscarinic receptor-independent activation of cyclic adenosine monophosphate-dependent protein kinase A (PKA) in the RVLM is involved in the cardiovascular responses exhibited during Mev intoxication.
In Sprague-Dawley rats, our results showed that microinjection bilaterally of Mev (10 nmol) into RVLM induced a progressive augmentation in NF-κB, PI3K, Akt or PTEN activity that paralleled the increase in NOS II or peroxynitrite level in RVLM. Loss-of-function manipulations that included pharmacological blockade, gene knockdown, or immunoneutralization of NF-κB, PI3K or Akt in RVLM significantly potentiated and prolonged the initial increase in “life-and-death” signal, reversed the cardiovascular depression, and blunted the augmented expression of NOS II or nitrotyrosine on induced by Mev. Blockade of PI3K or Akt in RVLM also significantly blunted the Mev-induced activation of NF-κB in the RVLM. However, immunoneutralization of PTEN in RVLM significantly diminished the increase in “life-and-death” signal and potentiated the increase in Akt activity. We conclude that the PI3K/Akt cascade plays a “pro-death” role in our Mev intoxication model of brain stem death by upregulating NF-κB/NOS II/peroxynitrite in the RVLM, subject to antagonism by PTEN in this process.
Microinjection bilaterally of Mev (10 nmol) into the RVLM induced a significantly augmentation in PKA activity in ventrolateral medulla that was not antagonized by coadministration of a nonselevtive or selective muscarinic receptor inhibitor. However, pharmacological blockade PKA in RVLM significantly blunted the initial increase in “life-and-death” signal and the accompanying augmentation of NOS I expression in the ventrolateral medulla exhibited during Mev intoxication. We conclude that a muscarinic receptor-independent activation of PKA plays a “pro-life” role in our Mev intoxication model of brain stem death by up regulating NOS I/PKG in the RVLM.
According to this study, we proved that Mev stimulates different mechanism, muscarinic receptor-independent/PKA and PI3K/Akt/NF-κB, to regulate NOS I and NOS II expression respectively, and induces cardiovascular responses during “pro-life” and “pro-death” phases. This information should provide further insights on the cellular mechanism of central cardiovascular regulation during the progression towards brain stem death, and offer news vistas in our search for therapeutic remedies or management strategies against fatal organophosphate poisoning and brain stem death.
目次 Table of Contents
摘要 I
Abstract IV
Content VII
List of Figures and Tables X
Abbreviations XIV
Chapter 1. Introduction 1
1.1 Brain stem death 2
1.2 Power density of vasomotor components of systemic arterial pressure signals 2
1.3 Rostral ventrolateral medulla (RVLM) 3
1.4 Organophosphate 4
1.4.1 Mechanism of action 4
1.4.2 Classification 5
1.4.3 Clinical symptoms 5
1.4.4 Clinical therapy 5
1.4.5 Mevinphos 6
1.5 Mevinphos intoxication model of brain stem death 6
1.6 Nuclear factor-kB (NF-kB) 7
1.7 Phosphoinositide 3-kinases (PI3K) 7
1.7.1 PI3K classification 8
1.7.2 PI3K signal transduction 8
1.8 Akt 9
1.9 Phosphatase and tensin homologue deleted on chromosome ten
(PTEN) 9
1.10 Cyclic adenosine monophosphate-dependent protein kinase A (PKA) 10
Chapter 2. Rationale and Research Aim 16
2.1 Rationale 17
2.2 Research aim 17
Chapter 3. Materials and Methods 19
3.1 General preparation of animals 20
3.2 Recording of cardiovascular parameters 20
3.3 Microinjection of test agents into the RVLM 21
3.4 Collection of tissue samples from ventrolateral medulla 22
3.5 Protein excitation 22
3.6 Measuremant of NF-kB transcription activation 23
3.7 Measurement of enzyme activity 23
3.7.1 Measurement of PI3K activity 23
3.7.2 Measurement of Akt activity 23
3.7.3 Measurement of PTEN activity 24
3.7.4 Measurement of PKA activity 24
3.8 Western blot analysis 24
3.9 Electrophoretic mobility shift assay (EMSA) 25
3.10 Real-time polymerase chain reaction (real-time PCR) 25
3.11 Statistical analysis 26
Chapter 4. “Pro-death” Role for PI3K/Akt/NF-kB Cascade at the RVLM and Its Antagonism by PTEN in a Mevinphos Intoxication Model of Brain Stem Death 30
4.1 Introduction 31
4.2 Results 31
4.3 Discussion 37
Chapter 5. Muscarinic Receptor-independent Activation of PKA in RVLM Underlies the “Pro-life” Phase of Cardiovascular Responses during Mevinphos Intoxication Model of Brain Stem Death 71
5.1 Introduction 72
5.2 Results 72
5.3 Discussion 75
Chapter 6. Conclusion and Future Work 81
6.1 Conclusion 82
6.2 Future work 83
References 86
Appendix 108
參考文獻 References
Akselrod S (1988). Spectral analysis of fluctuations in cardiovascular
parameters: a quantitative tool for the investigation of autonomic control. Trends Pharmacol Sci 9, 6-9.
Akselrod S, Eliash S, Oz O & Cohen S (1987). Hemodynamic regulation in
SHR: investigation by spectral analysis. Am J Physiol Heart Circ Physiol 253, H176-H183.
Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PRJ, Reese CB &
Cohen P (1997). Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase B. Curr Biol 7, 261-269.
Antonijevic B & Stojiljkovic MP (2007). Unequal efficacy of pyridinium oximes in acute organophosphate poisoning. Clin Med Res 5, 71-82.
Backer JM (2008). The regulation and function of class III PI3Ks: novel roles for Vps34. Biochem J 410, 1-17.
Bardin PG & van Eeden SF (1990). Organophosphate poisoning: grading the severity and comparing treatment between atropine and glycopyrrolate. Crit Care Med 18, 956-960.
Bardin PG, van Eeden SF, Moolman JA, Foden AP, Foden AP & Joubert JR (1994). Organophosphate and carbamate poisoning. Arch Intern Med 154, 1433-1441.
Brazil DP & Hemmings BA (2001). Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem Sci 26, 657-664.
Callaghan B, Koh SD & Keef KD (2004). Muscarinic M2 receptor stimulation of Cav1.2b requires phosphatidylinositol 3-kinase, protein kinase C, and c-Src. Circ Res 94, 626-633.
Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S & Reed JC (1998). Regulation of cell death protease caspase-9 by phosphorylation. Science 282, 1318-1321.
Caulfield MP & Birdsall NJM (1998). International union of pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacol Rev 50, 279-290.
Cerutti C, Barres C & Paultre C (1994). Baroreflex modulation of blood pressure and heart rate variabilities in rats: assessment by spectral analysis. Am J Physiol Heart Circ Physiol 266, H1993-H2000.
Chambers JE & Oppenheimer SF (2004). Organophosphates, serine esterase inhibition, and modeling of organophosphate toxicity. Toxicol Sci 77, 185-187.
Chan CF, Sun WZ, Lin JK & Lin-Shiau SY (2000). Activation of transcription factors of nuclear factor kappa B, activator protein-1 and octamer factors in hyperalgesia. Eur J Pharmacol 402, 61-68.
Chan JYH, Chan SHH & Chang AYW (2004a). Differential contributions of NOS isoforms in the rostral ventrolateral medulla to cardiovascular responses associated with mevinphos intoxication in the rat. Neuropharmacology 46, 1184-1194.
Chan JYH, Chan SHH, Dai KY, Cheng HL, Chou JLJ & Chang AYW (2006). Cholinergic-receptor-independent dysfunction of mitochondrial respiratory chain enzymes, reduced mitochondrial transmembrane potential and ATP depletion underlie necrotic cell death induced by the organophosphate poison mevinphos. Neuropharmacology 51, 1109-1119.
Chan JYH, Chan SHH, Li FCH, Tsai CY, Cheng HL & Chang AYW (2005a). Phasic cardiovascular responses to mevinphos are mediated through differential activation of cGMP/PKG cascade and peroxynitrite via nitric oxide generated in the rat rostral ventrolateral medulla by NOS I and II isoforms. Neuropharmacology 48, 161-172.
Chan JYH, Chang AYW & Chan SHH (2005b). New insights on brain stem death: from bedside to bench. Prog Neurobiol 77, 396-425.
Chan JYH, Cheng HL, Chou JLJ, Li FCH, Dai KY, Chan SHH & Chang AYW (2007). Heat shock protein 60 or 70 activates nitric-oxide synthase (NOS) I- and inhibits NOS II-associated signaling and depresses the mitochondrial apoptotic cascade during brain stem death. J Biol Chem 282, 4585-4600.
Chan JYH, Ou CC, Wang LL & Chan SHH (2004b). Heat shock protein 70 confers cardiovascular protection during endotoxemia via inhibition of nuclear factor-kB activation and inducible nitric oxide synthase expression in the rostral ventrolateral medulla. Circulation 110, 3560-3566.
Chan SHH, Wang LL, Chang KF, Ou CC & Chan JYH (2003). Altered temporal profile of heat shock factor 1 phosphorylation and heat shock protein 70 expression induced by heat shock in nucleus tractus solitarii of spontaneously hypertensive rats. Circulation 107, 339-345.
Chan SHH, Wang LL, Wang SH & Chan JYH (2001). Differential cardiovascular responses to blockade of nNOS or iNOS in rostral ventrolateral medulla of the rat. Br J Pharmacol 133, 606-614.
Chang AYW, Chan JYH, Chou JLJ , Li FCH, Dai KY & Chan SHH (2006). Heat shock protein 60 in rostral ventrolateral medulla reduces cardiovascular fatality during endotoxaemia in the rat. J Physiol 574, 547-564.
Chang AYW, Chan JYH, Kao FJ, Huang CM & Chan SHH (2001). Engagement of inducible nitric oxide synthase at the rostral ventrolateral medulla during mevinphos intoxication in the rat. J Biomed Sci 8, 475-483.
Chang C, Chang AYW & Chan SHH (2004). Neuroprotective role of heat shock protein 70 in the rostral ventrolateral medulla during acute mevinphos intoxication in the rat. J Biomed Sci 11, 748-756.
Chang CJ, Mulholland DJ, Valamehr B, Mosessian S, Sellers WR & Wu H (2008). PTEN nuclear localization is regulated by oxidative stress and mediates p53-dependent tumor suppression. Mol Cell Biol 28, 3281-3289.
Chen FM, Bilezikjian LM, Perrin MH, Rivier J & Vale W (1986). Corticotropin releasing factor receptor-mediated stimulation of adenylate cyclase activity in the rat brain. Brain Res 381, 49-57.
Chijiwa T, Mishima A, Hagiwara M, Sano M, Hayashi K, Inoue T, Naito K, Toshioka T & Hidaka H (1990). Inhibition of forskolin-induced neurite outgrowth and protein phosphorylation by a newly synthesized selective Inhibitor of cyclic AMP-dependent protein kinase, N-[2-(p-Bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89), of PC12D pheochromocytoma cells. J Biol Chem 265, 5267-5272.
Choi HS, Li B, Lin Z, Huang E & Liu AY (1991). cAMP and cAMP-dependent protein kinase regulate the human heat shock protein 70 gene promoter activity. J Biol Chem 266, 11858-11865.
Chuang FR, Jang SW, Lin JL, Chern MS, Chen JB & Hsu KT (1996). QTc prolongation indicates a poor prognosis in patients with organophosphate poisoning. Am J Emerg Med 14, 451-453.
Coste SC, Quintos RF & Stenzel-Poore MP (2002). Corticotropin-releasing hormone-related peptides and receptors: emergent regulators of cardiovascular adaptations to stress. Trends Cardiovasc Med 12, 176-182.
Cui QL, Fogle E & Almazan G (2006). Muscarinic acetylcholine receptors mediate oligodendrocyte progenitor survival through Src-like tyrosine kinases and PI3K/Akt pathways. Neurochem Int 48, 383-393.
Dampney RAL (1994). The subretrofacial vasomotor nucleus: anatomical,
chemical and pharmacological properties and role in cardiovascular
regulation. Prog Neurobiol 42, 197-227.
Dampney RAL, Goodchild AK, Robertson LG & Montgomery W (1982). Role of ventrolateral medulla in vasomotor regulation: a correlative anatomical and physiological study. Brain Res 249, 223-235.
Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y & Greenberg ME (1997). Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, 231-241.
Dayas CV, Buller KM, Crane JW, Xu Y & Day TA (2001). Stressor categorization: acute physical and psychological stressors elicit distinctive recruitment patterns in the amygdala and in medullary noradrenergic cell groups. Eur J Neurosci 14, 1143-1152.
Downward J (2004). PI3-kinase, Akt and cell survival. Semin Cell Dev Biol 15, 177-182.
Eberhardt W, Kunz D, Hummel R & Pfeilschifter J (1996). Molecular cloning of the rat inducible nitric oxide synthase gene promoter. Biochem Biophys Res Commun 223, 752-756.
Engelman JA, Luo J & Cantley LC (2006). The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 7, 606-619.
Falasca M & Maffucci T (2007). Role of class II phosphoinositide 3-kinase in cell signalling. Biochem Soc Trans 35, 211-214.
Felder CC (1995). Muscarinic acetylcholine receptors: signal transduction through multiple effectors. FASEB J 9, 619-625.
Fox MW, Anderson RE & Meyer FB (1993). Neuroprotection by corticotropin releasing factor during hypoxia in rat brain. Stroke 24, 1072-1076.
Francis SH & Corbin JD (1994). Structure and function of cyclic nucleotide-dependent protein kinases. Annu Rev Physiol 56, 237-272.
Gao J, Morrison DC, Parmely TJ, Russell SW & Murphy WJ (1997). An interferon-γ-activated site (GAS) is necessary for full expression of the mouse iNOS gene in response to interferon-γ and lipopolysaccharide. J Biol Chem 272, 1226-1230.
Giraldo E, Micheletti R, Montagna E, Giachetti A, Vigano MA, Ladinsky H & Melchiorre C (1988). Binding and functional characterization of the cardioselective muscarinic antagonist methoctramine. J Pharmacol Exp Ther 244, 1016-1020.
Goldstein B, DeKing D, DeLong DJ, Kempski MH, Cox C, Kelly MM, Nichols DD & Woolf PD (1993). Autonomic cardiovascular state after severe brain injury and brain death in children. Crit Care Med 21, 228-233.
Goldstein B, Toweill D, Lai S, Sonnenthal K & Kimberly B (1998). Uncoupling of the autonomic and cardiovascular systems in acute brain injury. Am J Physiol Regulatory Integrative Comp Physiol 275, R1287-R1292.
Guizzetti M, Bordi F, Dieguez-Acuña FJ, Vitalone A, Madia F, Woods JS & Costa LG (2003). Nuclear factor kB activation by muscarinic receptors in astroglial cells: effect of ethanol. Neuroscience 120, 941-950.
Hagan JJ, Jansen JH & Broekkamp CL (1987). Blockade of spatial learning by the M1 muscarinic antagonist pirenzepine. Psychopharmacology 93, 470-476.
Hall AV, Antoniou H,Wang Y, Cheung AH, Arbus AM, Olson SL, Lu WC, Kau CL & Marsden PA (1994). Structural organization of the human neuronal nitric oxide synthase gene (NOS1). J Biol Chem 269, 33082–33090.
Halliwell B (1997). What nitrates tyrosine? Is nitrotyrosine specific as a
biomarker of peroxynitrite formation in vivo? FEBS Lett 411, 157-160.
Hattori Y, Hattori S & Kasai K (2003). Lipopolysaccharide activates Akt in vascular smooth muscle cells resulting in induction of inducible nitric oxide synthase through nuclear factor-kappa B activation. Eur J Pharmacol 481, 153-158.
Haupt WF & Rudolf J (1999). European brain death codes: a comparison of national guidelines. J Neurol 246, 432-437.
Hill WD, Hess DC, Carroll JE, Wakade CG, Howard EF, Chen Q, Cheng C, Martin-Studdard A, Waller JL & Beswick RA (2001). The NF-kB inhibitor diethyldithiocarbamate (DDTC) increases brain cell death in a transient middle cerebral artery occlusion model of ischemia. Brain Res Bull 55, 375-386.
Hirsch E, Costa C & Ciraolo E (2007). Phosphoinositide 3-kinases as a common platform for multi-hormone signaling. J Endocrinol 194, 243-256.
Huang HN, Lu PJ, Lo WC, Lin CH, Hsiao M & Tseng CJ (2004). In situ Akt phosphorylation in the nucleus tractus solitarii is involved in central control of blood pressure and heart rate. Circulation 110, 2476-2483.
Hung TP & Chen ST (1995). Prognosis of deeply comatose patients on ventilators. J Neurol Neurosurg Psychiatry 58, 75-80.
Huo YY, Li G, Duan RF, Gou Q, Fu CL, Hu YC, Song BQ, Yang ZH, Wu DC & Zhou PK (2008). PTEN deletion leads to deregulation of antioxidants and increased oxidative damage in mouse embryonic fibroblasts. Free Radic Biol Med 44, 1578-1591.
Inoue K, Miyake S, Kumashiro M, Ogata H, Ueta T & Akatsu T (1991). Power spectral analysis of blood pressure variability in traumatic quadriplegic humans. Am J Physiol Heart Circ Physiol 260, H842-H847.
Isenovic ER, Meng Y, Divald A, Milivojevic N & Sowers JR (2002). Role of phosphatidylinositol 3-kinase/Akt pathway in angiotensin II and insulin-like growth factor-1 modulation of nitric oxide synthase in vascular smooth muscle cells. Endocrine 19, 287-292.
Jacoby S, Sims RE & Hartell NA (2001). Nitric oxide is required for the induction and heterosynaptic spread of long-term potentiation in rat cerebellar slices. J Physiol 535, 825-839.
Jeong Y, Won J, Kim C & Yim J (2000). 5'-Flanking sequence and promoter activity of the rabbit neuronal nitric oxide synthase (nNOS) gene. Mol Cells 10, 566-574.
Julien C, Zhang ZQ, Cerutti C & Barres C (1995). Hemodynamic analysis of arterial pressure oscillations in conscious rats. J Auton Nerv Syst 50, 239-252.
Kamanyire R & Karalliedde L (2004). Organophosphate toxicity and occupational exposure. Occup Med 54, 69-75.
Kane LP, Shapiro VS, Stokoe D & Weiss A (1999). Induction of NF-kB by the Akt/PKB kinase. Curr Biol 9, 601-604.
Kao SJ, Lei HC, Kuo CT, Chang MS, Chen BC, Chang YC, Chiu WT & Lin CH (2005). Lipoteichoic acid induces nuclear factor-kB activation and nitric oxide synthase expression via phosphatidylinositol 3-kinase, Akt, and p38 MAPK in RAW 264.7 macrophages. Immunology 115, 366-374.
Karslliedde L (1999). Organophosphorus poisoning and anaesthesia. Anaesthesia 54, 1073-1088.
Karin M & Ben-Neriah Y (2000). Phosphorylation meets ubiquitination: the control of NF-kB activity. Annu Rev Immunol 18, 621-623.
Kase H, Iwahashi K, Nakanishi S, Matsuda Y, Yamada K, Takahashi M, Murakata C, Sato A & Kaneko M (1987). K-252 compounds, novel and potent inhibitors of protein kinase C and cyclic nucleotide-dependent protein kinases. Biochem Biophys Res Commun 142, 436-440.
Keinänen R, Vartiainen N & Koistinaho J (1999). Molecular cloning and characterization of the rat inducible nitric oxide synthase (iNOS) gene. Gene 234, 297–305.
Kennedy SG, Kandel ES, Cross TK & Hay N (1999). Akt/protein kinase B inhibits cell death by preventing the release of cytochrome c from mitochondria. Mol Cell Biol 19, 5800-5810.
Kim JH, Chu SC, Gramlich JL, Pride YB, Babendreier E, Chauhan D, Salgia R, Podar K, Griffin JD & Sattler M (2005). Activation of the PI3K/mTOR pathway by BCR-ABL contributes to increased production of reactive oxygen species. Blood 105, 1717-1723.
Kita Y, Ishise J, Yoshita Y, Aizawa Y, Yoshio H, Minagawa F, Shimizu M & Takeda R (1993). Power spectral analysis of heart rate and arterial blood pressure oscillation in brain-dead patients. J Auton Nerv Syst 44, 101-107.
Kleinert H, Pautz A, Linker K & Schwarz PM (2004). Regulation of the expression of inducible nitric oxide synthase. Eur J Pharmacol 500, 255-266.
Krieg T, Landsberger M, Alexeyev MF, Felix SB, Cohen MV & Downey JM (2003). Activation of Akt is essential for acetylcholine to trigger generation of oxygen free radicals. Cardiovasc Res 58, 196-202.
Kristof AS, Marks-Konczalik J, Billings E & Moss J (2003). Stimulation of signal transducer and activator of transcription-1 (STAT1)-dependent gene transcription by lipopolysaccharide and interferon-interferon-γ is regulated by
mammalian target of Rapamycin. J Biol Chem 278, 33637-33644.
Kuo CC, Lin WT, Liang CM & Liang SM (2006). Class I and III
phosphatidylinositol 3'-kinase play distinct roles in TLR signaling pathway. J
Immunol 176, 5943-5949.
Kuo TBJ, Yang CCH & Chan SHH (1997a). Selective activation of vasomotor
component of SAP spectrum by nucleus reticularis ventrolateralis in rats. Am
J Physiol Heart Circ Physiol 272, H485-H492.
Kuo TBJ, Yien HW, Hseu SS, Yang CCH, Lin YY, Lee LC & Chan SHH (1997b).
Diminished vasomotor component of systemic arterial pressure signals and
baroreflex in brain death. Am J Physiol Heart Circ Physiol 273,
H1291-H1298.
Lallement G, Baubichon D, Clarencon D, Galonnier M, Peoc’h M & Carpentier
P (1999). Review of the value of gacyclidine (GK-11) as adjuvant medication
to conventional treatments of organophosphate poisoning: primate
experiments mimicking various scenarios of military or terrorist attack by
soman. Neurotoxicology 20, 675-684.
Leslie NR & Downes CP (2002). PTEN: the down side of PI 3-kinase signalling.
Cell Signal 14, 285-295.
Li FCH, Tseng HP & Chang AYW (2005). Neuroprotective role of coenzyme
Q10 against dysfunction of mitochondrial respiratory chain at rostral
ventrolateral medulla during fatal mevinphos intoxication in the rat. Ann N Y
Acad Sci 1042, 195-202.
Li PL, Chao YM, Chan SHH & Chan JYH (2001). Potentiation of baroreceptor
reflex response by heat shock protein 70 in nucleus tractus solitarii confers
cardiovascular protection during heatstroke. Circulation 103, 2114-2119.
Lin HH, Chang SJ, Shie HJ & Lai CC (2006). Ethanol inhibition of
NMDA-induced responses and acute tolerance to the inhibition in rat rostral
ventrolateral medulla in vivo: involvement of cAMP-dependent protein
kinases. Neuropharmacology 51, 747-755.
Lin TJ, Walter FG, Hung DZ, Tsai JL, Hu SC, Chang JS, Deng JF, Chase PB,
Denninghoff K & Chan HM (2008). Epidemiology of organophosphate
pesticide poisoning in Taiwan. Clin Toxicol 46, 794-801.
Liu J & Lee TJF (1999). Mechanism of prejunctional muscarinic
receptor-mediated inhibition of neurogenic vasodilation in cerebral arteries.
Am J Physiol Heart Circ Physiol 276, H194-H204.
Maehama T & Dixon JE (1998). The tumor suppressor, PTEN/MMAC1,
dephosphorylates the lipid second messenger, phosphatidylinositol
3,4,5-trisphosphate. J Biol Chem 273, 13375-13378.
Maffucci T, Cooke FT, Foster FM, Traer CJ, Fry MJ & Falasca M. (2005). Class
II phosphoinositide 3-kinase defines a novel signaling pathway in cell
migration. J Cell Biol 169, 789-799.
May MJ & Ghosh S (1997). Rel/NF-κB and IκB proteins: an overview. Semin
Cancer Biol 8, 63-73.
Mehebik N, Jaubert AM, Sabourault D, Giudicelli Y & Ribière C (2005).
Leptin-induced nitric oxide production in white adipocytes is mediated
through PKA and MAP kinase activation. Am J Physiol Cell Physiol 289,
C379-C387.
Milner TA, Reis DJ, Pickel VM, Aicher SA & Giuliano R (1993). Ultrastructural
localization and afferent sources of corticotropin-releasing factor in the rat
rostral ventrolateral medulla: implications for central cardiovascular
regulation. J Comp Neurol 333, 151-167.
Monti B, Marri L & Contestabile A (2002). NMDA receptor-dependent CREB
activation in survival of cerebellar granule cells during in vivo and in vitro
development. Eur J Neurosci 16, 1490-1498.
Moosavi M, Maghsoudi N, Zahedi-Asl S, Naghdi N, Yousefpour M & Trounce
IA (2008). The role of PI3/Akt pathway in the protective effect of insulin
against corticosterone cell death induction in hippocampal cell culture.
Neuroendocrinology 88, 293-298.
Morris RC, Morris GZ, Zhang W, Gellerman M & Beebe SJ (2002). Differential
transcriptional regulation by the α- and γ-catalytic subunit isoforms of
cAMP-dependent protein kinase. Arch Biochem Biophys 403, 219-228.
Morrison SF, Milner TA & Reis DJ (1988). Reticulospinal vasomotor neurons of
the rat rostral ventrolateral medulla: relationship to sympathetic nerve
activity and the C1 adrenergic cell group. J Neurosci 8, 1286-1301.
Moynagh PN (2005). The NF-κB pathway. J Cell Sci 118, 4589-4592.
Murga C, Fukuhara S & Gutkind JS (2000). A novel role for
phosphatidylinositol 3-kinase β in signaling from G protein-coupled
receptors to Akt. J Biol Chem 275, 12069-12073.
Murga C, Laguinge L, Wetzker R, Cuadrado A & Gutkind JS (1998). Activation
of Akt/protein kinase B by G protein-coupled receptors. A role for α and βγ
subunits of heterotrimeric G proteins acting through
phosphatidylinositol-3-OH kinaseγ. J Biol Chem 273, 19080-19085.
Navé BT, Ouwens DM, Withers DJ, Alessi DR & Shepherd PR (1999).
Mammalian target of rapamycin is a direct target for protein kinase B:
identification of a convergence point for opposing effects of insulin and
amino-acid deficiency on protein translation. Biochem J 344, 427-431.
New DC & Wong YH (2007). Molecular mechanisms mediating the G
protein-coupled receptor regulation of cell cycle progression. J Mol Signal 2,2.
Nguyen H, Ramana CV, Bayes J & Stark GR (2001). Roles of
phosphatidylinositol 3-kinase in Interferon-γ-dependent phosphorylation of
STAT1 on serine 727 and activation of gene expression. J Biol Chem 276,
33361-33368.
Nolan GP, Ghosh S, Liou HC, Tempst P & Baltimore D (1991). DNA binding
and IκB inhibition of the cloned p65 subunit of NF-κB, a rel-related
polypeptide. Cell 64, 961-969.
Ogawara Y, Kishishita S, Obata T, Isazawa Y, Suzuki T, Tanaka K, Masuyama
N & Gotoh Y (2002). Akt enhances Mdm2-mediated ubiquitination and
degradation of p53. J Biol Chem 277, 21843-21850.
Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM & Donner DB (1999).
NF-κB activation by tumour necrosis factor requires the Akt serine-threonine
kinase. Nature 401, 82-85.
Pagani M, Lombardi F, Guzzetti S, Rimoldi O, Furlan R, Pizzinelli P, Sandrone
G, Malfatto G, Dell'Orto S, Piccaluga E, Turiel M, Baselli G, Cerutti S &
Malliani A (1986). Power spectral analysis of heart rate and arterial pressure
variabilities as a marker of sympatho-vagal interaction in man and conscious
dog. Circ Res 59, 178-193.
Pallis CA (1983). ABC of brain stem death. British Med J, London.
Pallis CA & Prior PF (1983). Guidelines for the determination of death.
Neurology 33, 251-252.
Papaioannou V, Giannakou M, Maglaveras N, Sofianos E & Giala M (2008).
Investigation of heart rate and blood pressure variability, baroreflex
sensitivity, and approximate entropy in acute brain injury patients. J Crit Care
23, 380-386.
Petiot A, Ogier-Denis E, Blommaart EFC, Meijer AJ & Codogno P (2000).
Distinct classes of phosphatidylinositol 3-kinases are involved in signaling
pathways that control macroautophagy in HT-29 cells. J Biol Chem 275,
992-998.
Planchon SM, Waite KA & Eng C (2008). The nuclear affairs of PTEN. J Cell
Sci 121, 249-253.
Quinn PG (1993). Distinct activation domains within cAMP response
element-binding protein (CREB) mediate basal and cAMP-stimulated
transcription. J Biol Chem 268, 16999-17009.
Randell TT (2004). Medical and legal considerations of brain death. Acta
Anaesthesiol Scand 48, 139-144.
Raynaud FI, Eccles S, Clarke PA, Hayes A, Nutley B, Alix S, Henley A,
Di-Stefano F, Ahmad Z, Guillard S, Bjerke LM, Kelland L, Valenti M,
Patterson L, Gowan S, de Haven Brandon A, Hayakawa M, Kaizawa H,
Koizumi T, Ohishi T, Patel S, Saghir N, Parker P, Waterfield M & Workman P
(2007). Pharmacologic characterization of a potent inhibitor of class I
phosphatidylinositide 3-kinases. Cancer Res 67, 5840-5850.
Reis DJ, Ruggiero DA & Morrison SF (1989). The C1 area of the rostral
ventrolateral medulla oblongata. A critical brainstem region for control of
resting and reflex integration of arterial pressure. Am J Hypertens 2,
363S-374S.
Renard P, Ernest I, Houbion A, Art M, Le Calvez H, Raes M & Remacle J
(2001). Development of a sensitive multi-well colorimetric assay for active
NFκB. Nucleic Acids Res 29, e21.
Rimoldi O, Pierini S, Ferrari A, Cerutti S, Pagani M & Malliani A (1990).
Analysis of short-term oscillations of R-R and arterial pressure in conscious
dogs. Am J Physiol Heart Circ Physiol 258, H967-H976.
Romashkova JA & Makarov SS (1999). NF-κB is a target of AKT in
anti-apoptotic PDGF signaling. Nature 401, 86-90.
Ross CA, Ruggiero DA, Park DH, Joh TH, Sved AF, Fernandez-Pardal J,
Saavedra JM & Reis DJ (1984). Tonic vasomotor control by the rostral
ventrolateral medulla: effect of electrical or chemical stimulation of the area
containing C1 adrenaline neurons on arterial pressure, heart rate, and
plasma catecholamines and vasopressin. J Neurosci 4, 474-494.
Rossant CJ, Pinnock RD, Hughes J, Hall MD & McNulty S (1999).
Corticotropin-releasing factor type 1 and type 2 receptors regulate
phosphorylation of calcium/cyclic adenosine 3',5'-monophosphate response
element-binding protein and activation of p42/p44 mitogen-activated protein
kinase. Endocrinology 140, 1525-1536.
Satoh T & Hosokawa M (2000). Organophosphates and their impact on the
global environment. Neurotoxicology 21, 223-228.
Schreihofer AM, Stornetta RL & Guyenet PG (2000). Regulation of
sympathetic tone and arterial pressure by rostral ventrolateral medulla after
depletion of C1 cells in rat. J Physiol 529, 221-236.
Schreck R, Grassmann R, Fleckenstein B & Baeuerle PA (1992). Antioxidants
selectively suppress activation of NF-κB by human T-cell leukemia virus
type I Tax protein. J Virol 66, 6288-6293.
Settergren G (2003). Brain death: an important paradigm shift in the 20th
century. Acta Anaesthesiol Scand 47, 1053-1058.
Shen WH, Balajee AS, Wang J, Wu H, Eng C, Pandolfi P & Y Yin (2007).
Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell
128, 157-170.
Sulis ML & Parsons R (2003). PTEN: from pathology to biology. Trends Cell
Biol 13, 478-483.
Takahashi H, Kojima T, Ikeda T, Tsuda S & Shirasu Y (1991). Differences in the
mode of lethality produced through intravenous and oral administration of
organophosphorus insecticides in rats. Fundam Appl Toxicol 16, 459-468.
Teshima S, Nakanishi H, Nishizawa M, Kitagawa K, Kaibori M, Yamada M,
Habara K, Kwon AH, Kamiyama Y, Ito S & Okumura T (2004). Up-regulation
of IL-1 receptor through PI3K/Akt is essential for the induction of iNOS gene
expression in hepatocytes. J Hepatol 40, 616-623.
Testa JR & Bellacosa A (2001). Akt plays a central role in tumorigenesis. Proc
Natl Acad Sci 98, 10983-10985.
Todisco A, Ramamoorthy S, Pausawasdi N & Tacey K (1999). Carbachol
activates IκB kinase in isolated canine gastric parietal cells. Biochem
Biophys Res Commun 261, 877-884.
Triedman JK & Saul JP (1994). Blood pressure modulation by central venous
pressure and respiration. Buffering effects of the heart rate reflexes.
Circulation 89, 169-179.
Vanhaesebroeck B & Alessi DR (2000). The PI3K-PDK1 connection: more
than just a road to PKB. Biochem J 346, 561-576.
Vanhaesebroeck B & Waterfield MD (1999). Signaling by distinct classes of
phosphoinositide 3-kinases. Exp Cell Res 253, 239-254.
Vazquez F, Grossman SR, Takahashi Y, Rokas MV, Nakamura N & Sellers WR
(2001). Phosphorylation of the PTEN tail acts as an inhibitory switch by
preventing its recruitment into a protein complex. J Biol Chem 276,
48627-48630.
Vazquez F, Ramaswamy S, Nakamura N & Sellers WR (2000).
Phosphorylation of the PTEN tail regulates protein stability and function. Mol
Cell Biol 20, 5010-5018.
Vlahos CJ, Matter WF, Hui KY & Brown RF (1994). A specific inhibitor of
phosphatidylinositol 3-kinase,
2-(4-Morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002) J Biol
Chem 269, 5241-5248.
Waelbroeck M, Camus J, Tastenoy M & Christophe J (1992). Binding
properties of nine 4-diphenyl-acetoxy-N-methyl-piperidine (4-DAMP)
analogues to M1, M2, M3 and putative M4 muscarinic receptor subtypes. Br
J Pharmacol 105, 97-102.
Wang CY, Guttridge DC, Mayo MW & Baldwin Jr AS (1999). NF-κB induces
expression of the Bcl-2 homologue A1/Bfl-1 to preferentially suppress
chemotherapy-induced apoptosis. Mol Cell Biol 19, 5923-5929.
Wang CY, Mayo MW, Korneluk RG, Goeddel DV & Baldwin Jr AS (1998).
NF-κB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and
c-IAP2 to suppress caspase-8 activation. Science 281, 1680-1683.
Wang TY, Chen XQ, Du JZ, Xu NY, Wei CB & Vale WW (2004).
Corticotropin-releasing factor receptor type 1 and 2 mRNA expression in the
rat anterior pituitary is modulated by intermittent hypoxia, cold and restraint.
Neuroscience 128, 111-119.
Wei J, Guo H, Gao C & Kuo PC (2004). Peroxide-mediated chromatin
remodelling of a nuclear factor kappa B site in the mouse inducible nitric
oxide synthase promoter. Biochem J 377, 809-818.
Wen Z, Zhong Z & Darnell JE Jr (1995). Maximal activation of transcription by
Stat1 and Stat3 requires both tyrosine and serine phosphorylation. Cell 82,
241-250.
Wijdicks EFM (1995). Determining brain death in adults. Neurology 45,
1003-1011.
Wu EHT & Wong YH (2006). Activation of muscarinic M4 receptor augments
NGF-induced pro-survival Akt signaling in PC12 cells. Cell Signal 18,
285-293.
Wymann MP, Bulgarelli-Leva G, Zvelebil MJ, Pirola L, Vanhaesebroeck B,
Waterfield MD & Panayotou G (1996). Wortmannin inactivates
phosphoinositide 3-kinase by covalent modification of Lys-802, a residue
involved in the phosphate transfer reaction. Mol Cell Biol 16, 1722-1733.
Wymann MP, Zvelebil M & Laffargue M (2003). Phosphoinositide 3-kinase
signalling - which way to target? Trends Pharmacol Sci 24, 366-376.
Xie QW, Kahsiwabara Y & Nathan C (1994). Role of transcription factor
NF-κB/Rel in induction of nitric oxide synthase. J Biol Chem 269,
4705-4708.
Xu X, Chua CC, Gao J, Chua KW, Wang H, Hamdy RC & Chua BHL (2008).
Neuroprotective effect of humanin on cerebral ischemia/reperfusion injury is
mediated by a PI3K/Akt pathway. Brain Res 1227, 12-18.
Xu Y & Krukoff TL (2006). Adrenomedullin in the rostral ventrolateral medulla
inhibits baroreflex control of heart rate: a role for protein kinase A. Br J
Pharmacol 148, 70-77.
Yang L, Dan HC, Sun M, Liu Q, Sun XM, Feldman RI, Hamilton AD, Polokoff M,
Nicosia SV, Herlyn M, Sebti SM & Cheng JQ (2004). Akt/protein kinase B
signaling inhibitor-2, a selective small molecule inhibitor of Akt signaling with
antitumor activity in cancer cells overexpressing Akt. Cancer Res 64,
4394-4399.
Yang MW, Kuo TBJ, Lin SM, Chan KH & Chan SHH (1995). Continuous,
on-line, real-time spectral analysis of SAP signals during cardiopulmonary
bypass. Am J Physiol Heart Circ Physiol 268, H2329-H2335.
Yeh SH, Lin CH, Lee CF & Gean PW (2002). A requirement of nuclear
factor-κB activation in fear-potentiated startle. J Biol Chem 277,
46720-46729.
Yen DHT, Chan JYH, Huang CI, Lee CH, Chan SHH & Chang AYW (2005).
Coenzyme Q10 confers cardiovascular protection against acute mevinphos
intoxication by ameliorating bioenergetic failure and hypoxia in the rostral
ventrolateral medulla of the rat. Shock 23, 353-359.
Yen DHT, Chan JYH, Tseng HP, Huang CI, Lee CH, Chan SHH & Chang AYW
(2004). Depression of mitochondrial respiratory enzyme activity in rostral
ventrolateral medulla during acute mevinphos intoxication in the rat. Shock
21, 358-363.
Yen DHT, Yen JC, Len WB, Wang LM, Lee CH & Chan SHH (2001). Spectral
changes in systemic arterial pressure signals during acute mevinphos
intoxication in the rat. Shock 15, 35-41.
Yen DHT, Yien HW, Wang LM, Lee CH & Chan SHH (2000). Spectral analysis
of systemic arterial pressure and heart rate signals of patients with acute
respiratory failure induced by severe organophosphate poisoning. Crit Care
Med 28, 2805-2811.
Yien HW, Hseu SS, Lee LC, Kuo TBJ, Lee TY & Chan SHH (1997). Spectral
analysis of systemic arterial pressure and heart rate signals as a prognostic
tool for the prediction of patient outcome in the intensive care unit. Crit Care
Med 25, 258-266.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code