Responsive image
博碩士論文 etd-0714111-122334 詳細資訊
Title page for etd-0714111-122334
論文名稱
Title
InGaAs耦合量子點太陽電池研究
Photovoltaic response of coupled InGaAs quantum dots
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
98
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-06-28
繳交日期
Date of Submission
2011-07-14
關鍵字
Keywords
中間能隙、砷化銦鎵、分子束磊晶、耦合量子點、太陽電池
coupled quantum dot, InGaAs, molecular beam epitaxy (MBE), solar cell, intermediate band
統計
Statistics
本論文已被瀏覽 5644 次,被下載 0
The thesis/dissertation has been browsed 5644 times, has been downloaded 0 times.
中文摘要
本論文研究目的是利用實驗室分子束儀器(MBE)在N型摻雜砷化鎵(GaAs)基板成長耦合量子點(InGaAs)磊晶層,而量子點層間分別由5、10與15奈米的砷化鎵做為分隔層,使量子點間產生耦合作用,並期望能實現由Luque 與 Marti提出的中間能隙理論。
量測方面,我們使用實驗室的量測系統:電激螢光、光電流、電制吸收以及電調制反射光譜(electro reflectance)對樣品進行比對分析,並在AM1.5G作檢視,以獲得太陽電池基本參數。
太陽電池量測結果發現,量子點結構有助於長波長光子的吸收,可提升光電流的收集,然而,量子點層會產生應力,使得開路電壓的嚴重衰減,而影響轉換效率,使得轉換效率無法高於baseline。轉換效率的表現上,九層耦合量子點結構c494(5nm)、c519(10nm)與c520(15nm)為4.3%、5.1%與5.3%,九層耦合量子點綴於量子井結構c524(5nm)、c525(10nm)與c526(15nm)為3.9%、4.2%與4.7%,十、十二層耦合量子點結構c514(5nm)、c538(10nm)與c529(15nm)為2.9%、4.48%與5.89%。由數據分析可得知,間隔層厚度會影響轉換效率,厚度增加有助於應力的釋放,可降低缺陷的產生,使得轉換效率提升。
本論文之突破是在於樣品c529(VOC =0.64V, JSC =11.97mA/cm2,FF=67%,η=5.89%)的轉換效率可成功高於GaAs (VOC =0.87 V, JSC =7.4 mA/cm2,FF=72.3%,η=5.6%),由於樣品的量子點磊晶品質佳,幫助電流值大幅增加,足以彌補VOC與FF的衰減,因此有效的提升整體轉換效率且突破baseline。
Abstract
The purpose of our research is growing the coupled InGaAs quantum dots on the n-type substrate by molecular beam epitaxy in laboratory, and we choose 5,10 and 15 nanometers to be the thicknesses of GaAs spacer between the quantum dots layer. Due to the couple effect, we hope to realize the theorem of intermediate band proved by Luque and Marti. We measure the characteristic of samples by electroluminescence spectra, photoelectric current spectra, electrical absorption spectra and electro reflectance spectra in laboratory; moreover, we acquire the basic parameters of solar cell by AM1.5G for analyzing.
From the basic parameters of solar cell, we know that the quantum dots can enhance the photocurrent by absorbing additional photons , however, the strain caused by quantum dots would decay the open voltage seriously, so that the efficiency always under the baseline. Each efficiency of 9-stack QDs are 4.3%(c494),5.1%(c519),5.3% (c520),and each efficiency of 9-stack Dwells are 3.9%(c524),4.2%(c525),4.7%(c526), and 10-stack QDs(5nm) is 2.9%(c514),and 12-stack QDs(10nm) is 4.48%(c538),and 12-stack QDs(15nm) is 5.89%.
The break through of this paper is that the efficiency of c529(VOC=0.64V,JSC=11.97mA/cm2,FF=67%,η=5.89%)is higher than GaAs(VOC =0.87 V, JSC =7.4 mA/cm2,FF=72.3%,η=5.6%),and we attribute this performance to its good quality of miniband, because the current can be enhanced a lot, and it will make up for the lose of open voltage and filling factor, so that the efficiency can be higher than GaAs baseline.
目次 Table of Contents
論文審定書 i
誌謝 iii
中文摘要 v
英文摘要 vi
第一章 緒論 1
1-1 前言 1
1-2 Ⅲ-Ⅴ族太陽電池 1
1-3 中間能隙(intermediate band)架構與基本原則 3
1-4 實驗動機 4
第二章 實驗樣品介紹 6
2-1 耦合量子點太陽電池結構 6
第三章 實驗方法與製程步驟 12
3-1 光激螢光量測 12
3-2 電調制反射光譜量測 13
3-3 電激螢光量測 14
3-4 光電流量測 15
3-5 電致吸收量測 17
3-6 量測元件mesa製程步驟 18
第四章 實驗結果與分析 23
4-1 螢光光譜比較與分析 24
4-2 吸收光譜比較與分析 44
4-3 電調致反射光譜比較與分析 57
4-4 外部量子效率(EQE)分析 70
4-5 I-V量測 72

第五章 結論 80
參考文獻 82
參考文獻 References
[1] J. Zhao, A. Wang, M.A. Green, and F. Ferrazza. “ Novel 19.8% efficient ‘‘honeycomb’’ textured multicrysyalline and 24.4% monocrystalline silicon solar cells. ”,Appl. Phys. Lett. 73, 1991 (1998).
[2] O. Schultz, S.W. Glunz, G..P. Willeke.“Multicrystalline silicon solar cells exceeding 20% efficiency. ” ,Progress in Photovoltaics, Vol.12 (2004).
[3] R.B. Bergmann, T.J. Rinke, C. Berge*, J. Schmidt, and J.H. Werner. “Advances in monocrystalline Si thin-film solar cells by layer transfer.”, Solar Energy Materials & Solar Cells 74 (2002).
[4] M.J. Keevers, T.L. Young, U. Schubert, and M.A. Green.“10% Efficient CSG Minimodules.”,22nd European Photovoltaic Solar Energy Conference, Milan, September 2007.
[5] 林明獻, 太陽能電池技術入門, 全華出版社 (2008).
[6] Z. Mi, P. Bhattacharya and J. Yang.“Growth and characteristics of ultralow threshold 1.45μm metamorphic InAs tunnel injection quantum dot lasers on GaAs.”,Appl. Phys. Lett. 89, 153109 (2006).
[7] G..L. Rowland, T.J.C. Hosea, S. Malik, D. Childs, and R. Murray.“A photomodulated reflectance study of InAs/GaAs self-assembled quantum dots.”,Appl. Phys. Lett.73, 3268 (1998).
[8] D.V. Alexis,“Detailed balance limit of the efficiency of tandem solar cells.”, Appl. Phys. Lett., 13, 839 (1980).
[9] A. Luque and A. Marti,“Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels.”,Phys. Rev. Lett. 78, 5014 (1997).
[10] A.J. Nozik,” Quantum dot solar cells.”, Physica E 14 (2002).
[11] M. Sugawara,“Self-assemble InGaAs/GaAs quantum dots.”, Semiconductors and
Semimetals, 60, Academic press, 1999.
[12] L. Cuadra*, A. Marti, and A. Luque,“Present status of intermediate band solar cell research.”, Thin Solid Films 451-452 (2004).
[13] A. Martı, L. Cuadra, A. Luque,“Partial filling of a quantum dot intermediate
band for solar cells.”, IEEE Trans. Electron Dev. 48(2001).
[14] Y. Okada, T. Morioka, K.Yoshida, R. Oshima, Y. Shoji, T. Inoue, and T. Kita, ” Increase in photocurrent by optical transitions via intermediate quantum states in direct-doped InAs/GaNAs strain-compensated quantum dot solar cell.”,Appl. Phys.Lett.109, 024301 (2011).
[15] K.Y.Chung, C.Y.Chen, T.E.Tzeng, J.Y.Feng, T.S.Lay*,” Optical polarization in vertical coupled InGaAs quantum dots of p-type modulation doping.”,Physica E 40(2008).
[16] L. Marti, N. Lopez, E. Antolin, E.Canovas, A. Luque, C. Stanley, C. Farmer, and P. Diaz,”Emitter degradation in quantum dot intermediate band solar cells.”, Appl. Phys. Lett. 90, 233510 (2007).
[17] Y. Okada, R. Oshima, and A. Takata,”Characteristics of InAs/GaNAs strain-compensated quantum dot solar cell.”, Appl. Phys. 106, 024306 (2009).
[18] O.L. Lazarenkova and A.A. Balandin, ” Mini-band formation in a quantum dot crystal. ” ,Appl. Phys. Lett. 89, 5509 (2001).
[19] D. Guimard, R. Moriharam, D. Bordel, K. Tanabe, Y. Walayama, M. Nishioka, and Y. Arakawwa, ”Fabrication of InAs/GaAs quantum dot solar cells with enhanced photocurrent and without degradation of open circuit voltage.” ,Appl. Phys. Lett. 96, 203507 (2010).
[20] S.M. Hubbard, C. D. Cress, C. G. Bailey, R. P. ERaffaelle, S. G. Bailey, and D. M. Wilt, ”Effect of strain compensation on quantum dot enhanced GaAs solar cells. ”,Appl. Phys. Lett. 92, 123512 (2008).
[21] K.Y. Chuang, T. E. Tzeng, Y. C. Liu, K. D. Tzeng, T. S. Lay*” Photovoltaic response of coupled InGaAs quantum dots.”, Journal of Crystal Growth 323
(2011).
[22] R.B. Laghumavarapu, M. EI-Emawy, N. Nuntawong, A. Moscho, L.F. Lester, and D.L.Huffaker,”Improve device performance of InAs/GaAs quantum dot solar cells with GaP strain compensation layers.”, Appl.Phys.Lett.91, 243115 (2007).
[23] Yoshitaka Okada, Ryuji Oshima, and Takata,”Characteristics of InAs/GaNAs strain-compensated quantum dot solar cell”, Appl.Phys.Lett.106, 024306 (2009).
[24] N.H.Kim, P.Ramamurthy, L.J. Mawst, T.F. Kuech, P. Modark, T.J. Goodnough, D.V. Forbes, and M. Kanskar,”Characteristics of InGaAs quantum dots grown on tensile-strained GaAs1-xPx .”, Appl. Phys.Lett.97, 093518(2005).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.222.35.77
論文開放下載的時間是 校外不公開

Your IP address is 18.222.35.77
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code