Responsive image
博碩士論文 etd-0714111-152034 詳細資訊
Title page for etd-0714111-152034
論文名稱
Title
IEEE 802.16e無線都會網路中具動態調變與編碼之省電多播排程
Energy Efficient Multicast Scheduling with Adaptive Modulation and Coding for IEEE 802.16e Wireless Metropolitan Area Networks
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
100
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-13
繳交日期
Date of Submission
2011-07-14
關鍵字
Keywords
可調式視訊編碼、無線都會網路、媒介存取控制、IEEE 802.16e、適應性調變
wireless metropolitan area network, scalable video coding, medium access control, IEEE 802.16e, adaptive modulation and coding
統計
Statistics
本論文已被瀏覽 5643 次,被下載 0
The thesis/dissertation has been browsed 5643 times, has been downloaded 0 times.
中文摘要
隨著智慧型手機的普及與影音編碼技術的提升,隨時隨地提供多媒體視訊串流服務勢必廣受歡迎。另一方面,由於行動台(mobile station)大多是使用電池作為電力來源,因此省電的技術也就變得很重要。IEEE 802.16e(俗稱WiMAX)是目前無線都會網路(wireless metropolitan area network)的媒介存取控制國際標準。雖然802.16e建議了三種power saving classes,但主要都是針對unicast traffic。文獻方法SMBC-AMC採用以multicast superframe和logical broadcast channel為架構的省電多播排程(multicast scheduling)機制。然而,802.16e及SMBC-AMC皆無法支援即時性資料的傳輸。此外,SMBC-AMC還強制每個logical broadcast channel所包含的frames個數皆相同、強制每個mobile station在每個multicast superframe期間醒來的比例(duty cycle)皆相同、強制基地台在每個frame期間傳輸multicast data都必須使用相同的modulation,因此不但缺乏彈性,而且可能造成頻寬浪費,導致multicast energy throughput低落。為此,我們提出一個能善用適應性調變(adaptive modulation and coding)且具省電效果的多播排程,稱之為EEMS-AMC。EEMS-AMC採用cross-layer design的設計,結合application layer的SVC(scalable video coding)視訊編碼技術來讓整個網路的multicast energy throughput逼近最佳化的效果。更具體的來說,EEMS-AMC具有三項特點與優勢:(1)藉由限制multicast superframe的長度及執行admission control,EEMS-AMC保證admitted的視訊串流的base layer資料能在delay requirement內傳輸完畢。(2)EEMS-AMC針對視訊串流的base layer資料和enhancement layer資料採用不同的排程方式。由於所有admitted的視訊串流的base layer資料皆可順利傳輸,因此EEMS-AMC採用greedy的排程方式來使得所有admitted stations的醒來時間逼近最佳解。(3)對於視訊串流的enhancement layer資料,EEMS-AMC以potential multicast throughput為衡量標準來選擇modulation方式,以multicast energy throughput gain為衡量標準來做排程,使得整個網路的multicast energy throughput逼近最佳解。模擬實驗結果顯示,就average duty cycle、multicast energy throughput、multicast packet loss rate和normalized total utility來看,EEMS-AMC的效能遠高於SMBC-AMC。
Abstract
One of the major applications driving wireless network services is video streaming, which is based on the ability to simultaneously multicast the same video contents to a group of users, thus reducing the bandwidth consumption. On the other hand, due to slow progress in battery technology, the investigation of power saving technologies becomes important. IEEE 802.16e (also known as Mobile WiMAX) is currently the international MAC (medium access control) standard for wireless metropolitan area networks. However, in 802.16e, the power saving class for multicast traffic is designed only for best-effort-based management operations. On the other hand, SMBC-AMC adopts the concepts of “multicast superframe” and “logical broadcast channel” to support push-based multicast applications. However, SMBC-AMC requires that (1) the number of frames in each logical broadcast channel must be equal, (2) all mobile stations must have the same duty cycle, and (3) the base station must use the same modulation to send data in a frame. These imply that SMBC-AMC is too inflexible to reach high multicast energy throughput. In this thesis, we propose cross-layer energy efficient multicast scheduling algorithms, called EEMS-AMC, for scalable video streaming. The goal of EEMS-AMC is to find a multicast data scheduling such that the multicast energy throughput of a WiMAX network is maximum. Specifically, EEMS-AMC has the following attractive features: (1) By means of admission control and the restriction of the multicast superframe length, EEMS-AMC ensures that the base layer data of all admitted video streams can be delivered to mobile stations in timeliness requirements. (2) EEMS-AMC adopts the greedy approach to schedule the base layer data such that the average duty cycle of all admitted stations can approach to the theoretical minimum. (3) EEMS-AMC uses the metric “potential multicast throughput” to find the proper modulation for each enhancement layer data and uses the metric “multicast energy throughput gain” to find the near-optimal enhancement layer data scheduling. Simulation results show that EEMS-AMC significantly outperforms SMBC-AMC in terms of average duty cycle, multicast energy throughput, multicast packet loss rate, and normalized total utility.
目次 Table of Contents
論文審定書 i
致謝 ii
中文摘要 iii
Abstract iv
圖次 vii
表次 xi
第一章 緒論 1
1.1 微波存取全球互通(WiMAX) 1
1.2 多播服務(Multicast Services) 1
1.3 適應性調變 2
1.4 電源管理 4
1.5 論文貢獻 5
第二章 國內外相關文獻 7
2.1 Multicast Superframe 7
2.2 Logical Broadcast Channel and Modulation Scheme 8
2.3 SMBC-AMC 9
2.4 SMBC-AMC的缺點 14
第三章 EEMS-AMC 17
3.1 Admission Control 17
3.2 EEMS-AMC演算法 21
3.2.1 Base Layer的適應性調變 21
3.2.2 Base Layer資料排程 23
3.2.3 Enhancement Layer的適應性調變 25
3.2.4 Enhancement Layer資料排程 26
第四章 模擬實驗 31
4.1 變化Stream數目的影響 34
4.2 變化Mobile Station對Stream需求機率的影響 43
4.3 變化Mobile Station個數的影響 52
4.4 變化Mobile Station移動速率的影響 60
4.5 各種Video Stream類型的需求機率不相同 66
第五章 結論 85
參考文獻 References
[1] V. S. Abhayawardhana, I. J. Wassel, D. Crosby, M. P. Sellars, and M. G. Brown, “Comparison of Empirical Propagation Path Loss Models for Fixed Wireless Access Systems,” Vehicular Technology Conference, Vol. 1, pp. 73--77, June 2005.
[2] T.-C. Chen, Y.-Y. Chen, and J.-C. Chen, “An Efficient Energy Saving Mechanism for IEEE 802.16e Wireless MANs,” IEEE Transactions on Wireless Communications, Vol. 7, No. 10, pp. 3708--3712, October 2008.
[3] T.-C. Chen and J.-C. Chen, “Extended Maximizing Unavailability Interval (eMUI): Maximizing Energy Saving in IEEE 802.16e for Mixing Type I and Type II PSCs,” IEEE Communications Letters, Vol. 13, No. 2, pp. 151--153, February 2009.
[4] X. Chen, H. Zhai, X. Tian, and Y. Fang, “Supporting QoS in IEEE 802.11e Wireless LANs,” IEEE Transactions on Wireless Communications, Vol. 5, No. 8, pp. 2217--2227, August 2006.
[5] R. Cohen and L. Katzir, “On the Trade-Off between Energy and Multicast Efficiency in 802.16e-Like Mobile Networks,” IEEE Transactions on Mobile Computing, Vol. 7, No. 3, pp. 346--357, March 2008.
[6] C.-W. Huang, P.-H. Wu, S.-J. Lin and, J.-N. Hwang, “Layered Video Resource Allocation in Mobile WiMAX Using Opportunistic Multicasting,” IEEE Wireless Communications and Networking Conference, pp. 1--6, April 2009.
[7] S.-C. Huang, C. Chen, R.-H. Jan, and C.-C. Hsieh, “An Energy-Efficient Scheduling for Multiple MSSs in IEEE 802.16e Broadband Wireless,” IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 2008), pp. 1--5, September 2008.
[8] S.-C. Huang, R.-H. Jan, and C. Chen, “Energy Efficient Scheduling with QoS Guarantee for IEEE 802.16e Broadband Wireless Access Networks,” International Wireless Communications and Mobile Computing Conference (IWCMC 2007), pp. 547--552, August 2007.
[9] IEEE Standard 802.16-2004, IEEE Standard for Local and Metropolitan Area Networks. Part 16: Air Interface for Fixed Broadband Wireless Access Systems, IEEE, December 2004.
[10] IEEE Standard 802.16e-2005, IEEE Standard for Local and Metropolitan Area Networks. Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems. Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands, IEEE, December 2005.
[11] H. A. Kiehne, Battery Technology Handbook, Marcel Dekker, Inc., 2003.
[12] M.-G. Kim, J. Choi, and M. Kang, “Scheduled Power-Saving Mechanism to Minimize Energy Consumption in IEEE 802.16e Systems,” IEEE Communications Letters, Vol. 12, No. 12, pp. 874--876, December 2008.
[13] Q. Pang, V. C. M. Leung, and S. C. Liew, “An Enhanced Auto-Rate Algorithm for Wireless Local Area Networks Employing Loss Differentiation,” IEEE Transactions on Vehicular Technology, Vol. 57, No. 1, pp. 521--531, January 2008.
[14] B. Pesquet-Popescu, S. Li, and M. van der Schaar, “Scalable Video Coding for Adaptive Streaming Applications,” Multimedia over IP and Wireless Networks, Chapter 5, pp. 117--158, Academic Press Inc., 2007.
[15] M. H. Pinson, S. Wolf, and R. B. Stafford, “Video Performance Requirements for Tactical Video Applications,” IEEE Conference on Technologies for Homeland Security, pp. 85--90, May 2007.
[16] C. A. Segall and G. J. Sullivan, “Spatial Scalability within the H.264/AVC Scalable Video Coding Extension,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 17, No. 9, pp. 1121--1135, September 2007.
[17] C. R. Stevenson, G. Chouinard, Z. Lei, W. Hu, S. J. Shellhammer, and W. Caldwell, “IEEE 802.22: The First Cognitive Radio Wireless Regional Area Network Standard”, IEEE Communications Magazine, pp. 130--138, January 2009.
[18] N. C. Taher, Y. Ghamri-Doudane, B. El Hassan, and N. Agoulmine, “An Efficient Model-Based Admission Control Algorithm to Support Voice and Video Services in 802.11e WLANs,” Information Infrastructure Symposium, pp. 1--8, October 2009.
[19] J. Villalon, P. Cuenca, L. Orozco-Barbosa, Yongho Seok, and T. Turletti, “Cross-Layer Architecture for Adaptive Video Multicast Streaming over Multirate Wireless LANs,” IEEE Journal on Selected Areas in Communications, Vol. 25, No. 4, pp. 699--711, May 2007.
[20] WiMAX. [Online] http://en.wikipedia.org/wiki/WiMAX
[21] P.-J. Wu, T.-M. Tsai, Y.-C. Kao, J.-N. Hwang, and C.-N. Lee, “An NS2 Simulation Module for Multicast and OFDMA of IEEE 802.16e Mobile WiMAX.” [Online] http://edith.cse.nsysu.edu.tw/wimax/Multicast_OFDMA_WiMAX.pdf.
[22] Y. Xiao, “Energy Saving Mechanism in the IEEE 802.16e Wireless MAN,” IEEE Communications Letters, Vol. 9, No. 7, pp. 595--597, July 2005.
[23] J. Zdepski, K. Joseph, and D. Raychaudhuri, “Packet Transport of VBR Interframe DCT Compressed Digital Video on a CSMA/CD LAN,” IEEE Global Telecommunications Conference, pp. 886--892, November 1989.
[24] 李蔚澤、許家華譯,WiMAX技術原理與應用,?眳p,2007。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.191.132.194
論文開放下載的時間是 校外不公開

Your IP address is 18.191.132.194
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code