Responsive image
博碩士論文 etd-0714112-162455 詳細資訊
Title page for etd-0714112-162455
論文名稱
Title
氧化鉿薄膜電阻式記憶體轉態物理機制之研究
Study of Resistance Switching Physical Mechanism in Hafnium Oxide Thin Film for Resistive Random Access Memory
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
141
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-18
繳交日期
Date of Submission
2012-07-14
關鍵字
Keywords
電阻式記憶體、氧化鉿、非揮發性記憶體、電阻切換特性、載子傳輸機制
Non-volatile memory (NVM), RRAM, Hafnium oxide, Carrier transport mechanism, Resistance switching
統計
Statistics
本論文已被瀏覽 5704 次,被下載 323
The thesis/dissertation has been browsed 5704 times, has been downloaded 323 times.
中文摘要
在本研究中,將焦點著重於以氧化鉿薄膜之電阻式記憶體特元件的轉態物理機制。由於氧化鉿已經廣泛應用在CMOS 的製程中,所以它在CMOS 製程上有相當好的相容性。因為氧化鉿當成電阻式記憶體元件時的轉態特性很穩定,所以我們可以進一步地去研究電阻式記憶體在轉態過程中的變化。所以我們藉由不同的限制電流和reset 停止電壓來達到Multi-states,並由不同阻態的電流-電壓曲線的載子傳導機制探討,可以得知電阻式記憶體在set 與reset 過程中的轉變。大部分的電阻式記憶體都需要經過一個forming 的行為才會使元件具有電阻切換的特
性,接下來我們結合示波器去設計出一個等效電路來觀測forming 的行為。此外我們利用脈衝產生器給一個極短時間的脈衝來對元件進行forming。在不同的forming 行為中我們可以發現到一個overshoot 的現象,並藉由電荷的計算可以知道forming 過程中通過的電荷量決定電阻式記憶體的傳導路徑。
我們針對脈衝forming 的元件做研究,首先對set 與reset 的電阻轉態機制中可以知道電流傳導的路徑是不連續的,並藉此不對稱的電壓-電流曲線的傳導機制探討和模擬電場的搭配下可以證明脈衝forming 的元件的載子傳輸是藉由一個不連續的傳導路徑。
Abstract
This study is focuses on the resistance switching physical mechanism in hafnium oxide (HfO2) of resistive random access memory (RRAM). HfO2 was taken as the resistance switching layer because HfO2 is extremely compatible with the prevalent complementary metal oxide semiconductor (CMOS) process. The detail physical mechanism is studied by the stable RRAM device (Ti/HfO2/TiN), which is offered from Industrial Technology Research Institute (ITRI). In this study, the resistance switching property of two different forming conductions are compared, including DC sweeping forming and AC pulse forming. In general, forming is a pivotal process in resistance
random access memory (RRAM) to activate the resistance switching behavior. However, over forming would lead to device damage. The overshoot current has been considered as a degradation reason during the forming process. The circuit design is used to obtain the overshoot effect of DC sweeping forming by oscilloscope and semiconductor parameter analyzer system. The quantity of charge through the switching layer has been proven as the key element in the formation of the conduction path. Ultra-fast pulse
forming can form a discontinuous conduction path to reduce the operation power.
目次 Table of Contents
Acknowledgement………………………………………….i
Abstract (Chinese)…………………………………............ii
Abstract (English)................................................................iii
Contents……………………………………………………iv
Figure captions……….......................................................vii
Table captions……............................................................xiii

Chapter1 Introduction
1-1.The evolution of memory.............................................1
1-2.Motivation........................................................................2
Chapter2 Literature
2-1.Introduction of memory................................................4
2-1-1.FeRAM (Ferroelectric RAM)....................................6
2-1-2.MRAM (Magnetic RAM)............................................7
2-1-3.PCRAM (Phase Change RAM)..............................8
2-1-4.RRAM (Resistance RAM).....................................10
2-2.The materials of Resistance RAM...........................11
2-2-1.Perovskite...............................................................11
2-2-1-1.PrCaMnO3 (PCMO).........................................12
2-2-1-2.SrTiO3 and SrZrO3..........................................13
2-2-2.Transition metal oxides........................................14
2-2-3.Organic materials..................................................16
2-3.The switching mechanism of Resistance RAM....17
2-3-1.Filamentary model................................................18
2-3-1-1.Joule heating effect.........................................18
2-3-1-2.Redox reaction with cation migration...........20
2-3-1-3.Redox reaction with anion migration...........21
2-3-2.Charge trap in small domain..............................22
2-3-3.Modified Schottky-like barrier model..................23
2-4.The mechanism of current conduction...................23
2-4-1.Ohmic conduction.................................................24
2-4-2.Schottky emission.................................................25
2-4-3.Poole-Frenkel emission......................................26
2-4-4.Tunneling conduction...........................................27
2-4-5.Space charge limited current..............................27
2-4-6.Hopping conduction..............................................28
Chapter3 Study of the Resistance Switching Physical Mechanism
3-1.Results for Ti/HfO2/TiN device.................................43
3-1-1.Experimental procedures....................................43
3-1-2.Basic characteristic of HfO2................................44
3-2.Multi-state characteristic............................................46
3-3.Analyses of carrier transport mechanism..............46
3-3-1.Current-Voltage curve for fitting...........................46
3-3-2.Current-Voltage curve for fitting in Multi-state...47
3-3-3.Discussion for carrier transport mechanism...49
3-4.Extraction of relevant parameters............................50
3-4-1.Schottky barrier height and switch thickness..50
3-4-2.Barrier height and Hopping distance................51
3-5.Extraction parameters and discussion..................52
3-5-1.Set process............................................................52
3-5-2.Reset process.......................................................54
Chapter4 The Overshoot of Forming Process
4-1.Study of overshoot......................................................73
4-1-1.Experimental procedures....................................73
4-1-2.Compare the different forming process...........74
4-2.Compared of the different forming device.............75
4-2-1.Calculation quantity of electricity........................75
4-2-2.Current-voltage curve for fitting...........................76
4-2-3.Variable-temperature measurements in LRS.76
4-3.Discussion...................................................................77
Chapter5 Study of Pulse Forming Device
5-1.Basic characteristic of pulse forming device.........87
5-1-1.The current-voltage curve with DC voltage
sweeping...........................................................................87
5-1-2.Multi-set states characteristic.............................88
5-2.Analyses of set process............................................88
5-2-1.Current-voltage curve for fitting in Multi-set
states..................................................................................88
5-3.Analyses of reset process.........................................91
5-3-1.Stage by stage of resistance state.....................91
5-3-2.Current-voltage curve for fitting...........................91
5-3-3.Schottky barrier height and switch thickness...92
5-4.Study of the PN bias asymmetric phenomenon...94
5-4-1.Basic characteristic...............................................94
5-4-2.Current-voltage curve for fitting...........................94
5-4-3.Hopping barrier high and Hopping distance in
LRS.....................................................................................95
5-4-4.Schottky barrier high and switch thickness in
HRS....................................................................................95
5-5.Discussion with energy band...................................97
5-5-1.Barrier lowering with electric field......................97
5-5-2.Hopping barrier lowering and hopping
distance.............................................................................97
5-5-3.Schottky barrier lowering.....................................98
5-5-4.Schottky emission become Hopping conduction
............................................................................................99
5-6.Discussion................................................................100
Chapter6 Conclusion.....................................................118
References.......................................................................121
參考文獻 References
[1] Gerhard Muller, Thomas Happ, Michael Kund, Gill Yong Lee, Nicolas Nagel, and Recai Sezi, “ Status and Outlook of Emerging Nonvolatile Memory Technologies”,IEEE, 2004
[2] 簡昭欣、呂正傑、陳志遠、張茂男、許世祿、趙天生,“先進記憶體簡介,國研科技創刊號,2004 年
[3] R.E. Jones, Jr, P.D. Maniar, R. Moazzami, P. Zurcher, J.Z. Witowski, Y.T. Lii b, P. Chu and S.J. Gillespie, “ Ferroelectric non-volatile memories for low-voltage, low-power applications”, Thin Solid Films, 1995
[4] 葉林秀、李佳謀、徐明豐、吳德和,“磁阻式隨機存取記憶體技術的發展—現在與未來”,物理雙月刊 廿六期四卷,2004 年
[5] 劉志益、曾俊元,“電阻式非揮發性記憶體之近期發展”,電子月刊 第十一卷第四期,2005年
[6] A Sawa, “Resistive switching in transition metal oxides , ”Materialtoday. , vol.11,p6, Jun. 2008.
[7] http://theeestory.com/topics/4141
[8] A. Asamitsu, Y. Tomioka et al. “Current switching of resistive states in magnetoresistive manganites”, Nature 338 (3), 1997
[9] Y. Tokura, Y. Tomioka, “Colossal magnetoresistive manganites”, Mater, 200, 1,1999
[10] A. Sawa, T. Fujii, M. Kawasaki and Y. Tokura, “Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface”, Applied Physics Letters, 85(18), 2000
[11] S. Q. Liu, N. J. Wu, and A. Ignatiev, “Electric-pulse-induced reversible resistance change effect in magnetoresistive films”, Applied Physics Letters, 76(19), 2000
[12] A. Baikalov, Y. Q. Wang et al., “Field-Driven Hysteretic and Reversible Resistive Switch at the Ag-Pr0.7Ca0.3MnO3 Interface”, Applied Physics Letters,
83(5), 2003
[13] X. Chen, N. J. Wu et al., “Direct resistance profile for an electrical pulse induced resistance change device”, Applied Physics Letters, 87(23), 2005
[14] Y. Watanabe,a) J. G. Bednorz,b) A. Bietsch, Ch. Gerber, D. Widmer, and A.
Beckc),“Current-driven insulator–conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals”, Appl. Phys. Lett., Vol. 78, No. 23, 4 June 2001
[15] Dooho Choi, Dongsoo Lee, Hyunjun Sim, Man Chang, and Hyunsang Hwang ,“Reversible resistive switching of SrTiOx thin films for nonvolatile memory
applications”, Appl. Phys. Lett. 88, 082904 2006
[16] A. Beck, J. G. Bednorz, Ch. Gerber, C. Rossel,a) and D. Widmer,” Reproducible switching effect in thin oxide films for memory applications”, Appl. Phys. Lett., Vol. 77, No. 1, 3 July 2000
[17] Chun-Chieh Lin, Bing-Chung Tu et al., “Resistive Switching Mechanisms of V-Doped SrZrO3 Memory Films”, IEEE, 2006
[18] S. Seo, M. J. Lee et al.,”Reproducible resistance switching in polycrystalline NiO films”, Applied Physics Letters, 85(23), 2004
[19] Wen-Yuan Chang, Yen-Chao Lai,” Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications”, Appl. Phys. Lett. 92, 022110, 2008
[20] Weihua Guan, Shibing Long,” Nonvolatile resistive switching memory utilizing gold nanocrystals embedded in zirconium oxide”, Appl. Phys. Lett. 91, 062111, 2007
[21] Chang-Po Hsiung,a Jon-Yiew Gan,” Resistance Switching Characteristics of TiO2 Thin Films Prepared with Reactive Sputtering”, Electrochemical and Solid-State Letters, 12 (7) G31-G33 (2009)
[22] M.Y. Chan, T. Zhang,” Resistive switching effects of HfO2 high-k dielectric”, Microelectronic Engineering 85 (2008) 2420–2424
[23] L. P. Ma, J. Liu et al.,” Organic electrical bistable devices and rewritable memory cells”, Applied Physics Letters, 80(16), 2002
[24] Akihito Sawa, “Resistive switching in transition metal oxide”, materials today,11(6), 2008, p.28~36
[25] S. H. Chang, S. C. Chae, S. B. Lee, C. Liu, T. W. Noh,1 J. S. Lee,B. Kahng, J. H. Jang, M. Y. Kim,3 D.-W. Kim, C. U. Jung,” Effects of heat dissipation on unipolar resistance switching in Pt/NiO/Pt capacitors”, Appl. Phys. Lett. 92, 183507 (2008)
[26] Yu Chao Yang, Feng Pan, Qi Liu, Ming Liu, and Fei Zeng,” Fully Room-Temperature-Fabricated Nonvolatile Resistive Memory for Ultrafast and
High-Density Memory Application”, Nano Lett., Vol. 9, No. 4, 2009
[27] M. Fujimoto, H. Koyama et al., “TiO2 anatase nanolayer on TiN thin film exhibiting high-speed bipolar resistive switching ” , Applied Physics Letters, 89, 223509, 2006
[28] Kou-Chen Liu, Wen-Hsien Tzeng, Kow-Ming Chang, Yi-Chun Chan, Chun-Chih Kuo, Chun-Wen Cheng,” The resistive switching characteristics of a
Ti/Gd2O3/Pt RRAM device”, Microelectronics Reliability 50 (2010) 670–673
[29] M. J. Rozenberg, I. H. Inoue et al., “Nonvolatile memory with Multilevel Switching: A Basic Model”, Physical Review Letter,
[30] Akihito Sawa, “Resistive switching in transition metal oxide”, materials today, 11(6), 2008, p.28~36
[31] Daniele Ielmini, Yuegang Zhang,” Analytical model for subthreshold conductionand threshold switching in chalcogenide-based memory devices”, Journal of Applied Physics 102, 054517 .2007
[32] 施敏、伍國珏,“半導體元件物理學”,2008年
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code