Responsive image
博碩士論文 etd-0714113-101158 詳細資訊
Title page for etd-0714113-101158
論文名稱
Title
利用基質輔助雷射脫附游離質譜法和拉曼光譜研究細菌 及癌細胞之脂肪體學─以奈米材料為基礎的分析方法
Lipidomic profiling of bacterial and cancer cells using MALDI-MS and Raman spectroscopy- a nanomaterial based analytical approach
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
133
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-24
繳交日期
Date of Submission
2013-08-14
關鍵字
Keywords
細菌、癌細胞、脂肪體學、奈米材料、基質輔助雷射脫附游離質譜法、拉曼光譜
MALDI-MS, Raman spectroscopy, cancer cells, nanomaterial, lipidomic, bacteria
統計
Statistics
本論文已被瀏覽 5696 次,被下載 0
The thesis/dissertation has been browsed 5696 times, has been downloaded 0 times.
中文摘要
脂肪體學 (Lipidomics),定義為生物系統中針對脂質分子的特徵及有興趣的
部分進行系統性分析 (systems-level analysis)。在生物分子中,脂質扮演相當重要
的角色,除了構成細胞膜的骨架外,也參與能量儲存、蛋白質表現、基因調控等
生化反應。在2002 年,諾貝爾化學獎頒發給Koichi Tanaka,原因是他將
MALDI-MS 應用在生物分析領域上,也開啟了基因體學、蛋白質體學、脂肪體
學等跨領域研究。隨著奈米科技的引進,應用於MALDI 質譜的奈米分析方法已
經能夠靈敏的偵測/分析真實樣品。
第一部分,利用簡單的有機溶劑萃取癌症及癌症幹細胞的脂肪,以石墨烯輔
助雷射脫附游離質譜法 (GALDI-MS) 分析癌症及癌症幹細胞之脂肪體學。在樣
品點樣方法,以石墨烯為基質使用四種不同方法找到最佳化,也證實最佳的偵測
模式。我們也試著利用石墨烯為基質及石墨烯的共同基質 (co-matrix) ,對於癌
症及癌症幹細胞的脂質進行MALDI-MS 分析。
第二部分,探討不同氧化鋅奈米材料的大小/形狀對於革蘭氏陽性
(gram-positive) 和革蘭氏陰性細菌 (gram negative) 的影響。藉由細菌在各種濃度
的氧化鋅奈米材料培養下,研究細菌生長曲線並和觀察奈米材料對於細菌的毒性
/生物相容特性。為了確認氧化鋅奈米材料與細菌可能的作用模式,萃取出細菌
的總量脂肪 (total lipids) 進行MALDI-MS 分析,找出細菌脂肪樣品在
MALDI-MS 的最佳基質及偵測模式。最後,利用MALDI-MS 質譜圖說明殺死致
病菌的機制和細菌脂肪破壞對於殺死細菌的影響為何。
第三部分,將綠膿桿菌的複合內毒素添加到人類尿液中,在沒有任何純化及
樣品處理技術下,利用殼聚糖所修飾的奈米磁鐵 (nanomagents) 直接進行質譜分
析。結果顯示,兩種殼聚糖奈米磁鐵皆能有效濃縮尿液中的內毒素,並提高在
MALDI-MS 的偵測靈敏度。最後,對於奈米磁鐵與內毒素的分離機制進行探討。
此研究提供一個新穎的MALDI-MS 平台,未來可應用在生醫/臨床上對於細菌感染達快速、直接、有效的偵測。
第四部分, 利用奈米質譜法 (nano-MALDI-MS) 及奈米拉曼光譜法
(nano-Raman) 對於七種不同的細菌 (三種革蘭氏陽性菌、四種革蘭氏陰性菌) 進
行脂肪體學研究。在MALDI-MS 部分,以傳統基質結合奈米材料 (Au, Pt,
Au/Pt),進行不同種類細菌的脂質分析,除了有明顯的質譜峰外,也能區分革蘭
氏陽性菌和革蘭氏陰性菌;另外,在拉曼光譜部分,以不同脂質樣品配製方法 (固
相、液相) 找到雷射強度及資料收集時間的最佳化。在固相樣品下,利用Au 和
Pt 奈米粒子,以及不同比例的Au/Pt 做為基材 (substrate),對於特定的細菌脂質
進行拉曼訊號分析。
Abstract
Lipidomics can be defined as the characterization of lipid molecules and their interactions in biological systems i.e. a system-level analysis for lipidome. Lipids are an integral part of biomolecules. In addition to this, they also are a part of cell membranes, store energy, participate in the expression of proteins and are involved in gene regulation for biochemical actions. The Nobel Prize in Chemistry in 2002, Koichi Tanaka and John Fenn was awarded to the development of MALDI and ESI techniques. Both these techniques have been applied to biomolecule analysis and paved a doorway for interdisciplinary research involving, genomics, proteomics, lipidomics. With the introduction of nanotechnology, the detection sensitivity and the ability to analyze real samples have been made possible through nanomaterial based mass spectrometry. In the first application, lipids from cancer and cancer stem cells where extracted in organic solvent systems and graphene has been used as matrix for the analysis of the cancer lipids using MALDI-MS analysis. For the first time the application of graphene-assisted laser desorption ionization mass spectrometry (GALDI-MS) for lipidomics profiling of cancer and cancer stem cells has been demonstrated. We have also used this matrix for the successful differentiation between normal breast cells and breast cancer cells and cancer stem cells. This approach can be used for the discovery of potential biomarkers in biomedicine based on lipidomic profiling. In the second application, we reported the successful inhouse synthesis of ZnO nanoparticle (NPs), quantum dots (QDs) and nanorods (NRs). All these three ZnO nanomaterials were tested for their toxicity/compatibilty towards Pseudomonas aeruginosa and Staphylococcus aureus. The growth pattern of both these bacterial pathogens in the presence of the ZnO nanomaterials and the subsequent lipidomic changes were assessed using MALDI-MS. In the third application, for the first time, the use of CuFeO2@chitosan and Fe3O4@chitosan nanomagnets for affinity based separation and enrichment of trace levels of endotoxin and direct detection using MALDI-MS has been reported. The results showed that the CuFeO2@chitosan nanomagnets appeared to be more effective than Fe3O4@chitosan nanomagnets. Consequently, this approach proposes a novel MALDI-MS platform that can be further applied for biomedicine/clinical applications for rapid, direct and effective detection of bacterial infections. In the fourth application, rapid differentiation of gram negative and gram positive bacteria based on nanoparticle enabled fatty acid profiling using nano-Raman and nano-MALDI-MS. The results showed that Au/Pt NPs in the ratio of 1:1 combined with 9-AA matrix could lead to distinct lipid profiling for differentiation between gram positive and gram negative bacteria using nano-MALDI-MS. Also, in case of nano-Raman using Au NPs/Pt NCs as solid Raman substrates, specific peaks unique to specific bacteria were identified.
目次 Table of Contents
論文審定 書 .................................................................................................................................... i
誌 謝 .................................................................................................................................... ii
中文 摘要 .................................................................................................................................... iii
英文 摘要 .................................................................................................................................... v
目 錄 .................................................................................................................................... vii
圖目錄 ..................................................................................................................................... xi
第一章 緒論.................................................................................................................. 1
1.1 前言……………………………………………………………………………………...1
1.2 基質輔助雷射脫附游離質譜法 .................................................................................... 1
1.2.1 MS 之歷史發展 ....................................................................................................... 2
1.2.2 MS 儀器及工作原理 ............................................................................................... 2
1.2.3 MALDI-MS 基質效應 ............................................................................................. 3
1.2.4 奈米材料在MALDI-MS 之應用 ........................................................................... 4
1.3 脂肪體學 ........................................................................................................................ 5
1.3.1 細菌脂肪體學應用於基質輔助雷射脫附/游離質譜法 ........................................ 5
1.3.2 癌細胞脂肪體學應用於基質輔助雷射脫附游離質譜法 ..................................... 7
1.4 拉曼光譜法 .................................................................................................................... 8
1.4.1 拉曼光譜法概述及原理 ......................................................................................... 8
1.4.2 表面增強拉曼光譜散射 ......................................................................................... 8
1.4.3 表面增強拉曼光譜散射應用在生物領域 .............................................................. 8
1.5 研究目標 ........................................................................................................................ 9
1.6 參考文獻 ...................................................................................................................... 11
第二章 利用石墨烯輔助雷射脫附游離質譜法進行癌症及癌症幹細胞之脂肪體學
研究 .............................................................................................................................. 16
2.1 目的 .............................................................................................................................. 16
2.2 實驗部分 ...................................................................................................................... 17
2.2.1 儀器 ....................................................................................................................... 17
2.2.2 藥品 ....................................................................................................................... 18
2.2.3 膠體石墨烯的製備 ............................................................................................... 18
2.2.4 細胞培養 ............................................................................................................... 19
2.2.5 萃取細胞中的脂肪 ............................................................................................... 19
2.2.6 利用MALDI-MS 對於人類乳房正常細胞、癌細胞、癌症幹細胞之脂質進行分
析 ..................................................................................................................................... 20
2.2.7 MALDI-MS 偵測 ................................................................................................... 21
2.3 結果與討論 .................................................................................................................. 23
2.3.1 石墨烯的特性 ....................................................................................................... 23
2.3.2 基質效應對於癌症和癌症幹細胞之脂肪分析 ................................................... 25
2.3.3 比較石墨烯作為基質及共同基質 ....................................................................... 25
2.3.4 以石墨烯當作基質進行不同的樣品製備 ........................................................... 29
2.3.5 以GALDI-MS 對於癌症細胞和癌症幹細胞脂肪體學進行探討 ...................... 32
2.3.6 石墨烯作為MALDI-MS 基質之機制 ................................................................. 34
2.3.7 推測石墨烯與癌細胞脂質分子間的親和力 ....................................................... 34
2.4 結論 .............................................................................................................................. 36
2.5 參考文獻 ...................................................................................................................... 36
第三章 利用基質輔助雷射脫附游離質譜法探討氧化鋅奈米材料對於致病菌生長
影響和細菌脂肪體學之研究...................................................................................... 40
3.1 目的 .............................................................................................................................. 40
3.2 實驗部分 ...................................................................................................................... 42
3.2.1 儀器 ....................................................................................................................... 42
3.2.2 藥品 ........................................................................................................................ 42
3.2.3 製備氧化鋅奈米材料 ........................................................................................... 43
3.2.4 氧化鋅奈米材料對於細菌生長影響 ................................................................... 44
3.2.5 萃取細菌中的脂肪 ............................................................................................... 44
3.2.6 MALDI-MS 偵測 ................................................................................................... 45
3.3 結果與討論 .................................................................................................................. 45
3.3.1 氧化鋅奈米材料特性 ........................................................................................... 45
3.3.2 氧化鋅奈米材料在綠膿桿菌及金黃色葡萄球菌之毒性及生物相容性探討 ... 47
3.3.3 利用MALDI-MS 進行綠膿桿菌及金黃色葡萄球菌之脂肪分析 ..................... 51
3.4 結論 .............................................................................................................................. 58
3.5 參考文獻 ...................................................................................................................... 59
第四章 殼聚醣奈米磁鐵萃取和質譜檢測尿液中致病菌的內毒素 ....................... 62
4.1 目的 .............................................................................................................................. 62
4.2 實驗部分 ...................................................................................................................... 62
4.2.1 儀器 ....................................................................................................................... 62
4.2.2 藥品 ....................................................................................................................... 63
4.2.3 製備CuFeO2@chitosan 奈米粒子 ....................................................................... 63
4.2.4 製備Fe3O4@chitosan 奈米粒子 ........................................................................... 64
4.2.5 脂多糖萃取方法 ................................................................................................... 67
4.2.6 樣品製備 ............................................................................................................... 67
4.3 結果與討論 .................................................................................................................. 70
4.3.1 CuFeO2@chitosan 奈米粒子特性 ......................................................................... 70
4.3.2 Fe3O4@chitosan 奈米粒子特性 ............................................................................. 70
4.3.3 MALDI-MS 偵測內毒素 ...................................................................................... 73
4.3.4 尿液中偵測內毒素 ............................................................................................... 76
4.3.5 殼聚糖奈米磁鐵對內毒素回收和MALDI-MS 偵測 ......................................... 79
4.3.6 奈米磁鐵對內毒素分離機制 ............................................................................... 83
4.4 結論 .............................................................................................................................. 86
4.5 參考文獻 ...................................................................................................................... 86
第五章 奈米拉曼光譜法和奈米基質輔助雷射脫附游離質譜法應用在脂肪酸研究
達快速區分革蘭氏陰性及革蘭氏陽性細菌 ............................................................. 90
5.1 實驗部分 ....................................................................................................................... 90
5.1.1 儀器 ........................................................................................................................ 90
5.1.2 藥品 ....................................................................................................................... 91
5.1.3 製備金奈米粒子 ................................................................................................... 93
5.1.4 製備Au@MUA 奈米粒子 ................................................................................... 93
5.1.5 製備鉑奈米粒子及鉑奈米方塊 ........................................................................... 93
5.1.6 細菌培養液 ........................................................................................................... 94
5.1.7 萃取細菌中的脂肪 ................................................................................................ 94
5.1.8 MALDI-MS 偵測 ................................................................................................... 95
5.1.9 拉曼分析 ............................................................................................................... 95
5.2 結果與討論 ................................................................................................................... 96
5.2.1 金和鉑奈米材料的特性 ....................................................................................... 96
5.2.2 MALDI-MS 基質最佳化 ....................................................................................... 98
5.2.3 利用nano-MALDI-MS 進行細菌脂質分析 ...................................................... 100
5.2.4 利用nano-MALDI-MS 區分不同種類的細菌脂質 .......................................... 103
5.2.5 拉曼光譜儀對於細菌脂質進行最佳化探討 ..................................................... 105
5.2.6 利用拉曼光譜儀對於細菌脂肪體學進行分析 ................................................. 105
5.2.7 利用nano- Raman spectroscopy 區分不同種類的細菌脂質 ............................. 108
5.3 結論 ............................................................................................................................ 111
5.4 參考文獻 .................................................................................................................... 111
第六章 總結.............................................................................................................. 113
參考文獻 References
第一章
(1) Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T.“Protein and Polymer Analyses up to m/z 100 000 by Laser Ionization Time-of flight Mass Spectrometry”Rapid Commun Mass Spectrom 1988, 2, 151–3.
(2) Karas, M. ; Hillenkamp, F.“ Laser desorption ionization of proteins with
molecular masses exceeding 10,000 daltons”Anal. Chem. 1988, 60, 2299–301.
(3) Shrivas, K. ; Kailasa, S. K. ; Wu, H. F.“Quantum dots laser
desorption/ionization MS: multifunctional CdSe quantum dots as the matrix, concentrating probes and acceleration for microwave enzymatic digestion for peptide analysis and high resolution detection of proteins in a linear MALDI-TOF MS”Proteomics.2009, 9, 2656-67.
(4) Kailasa, S. K. ; Kiran, K. ; Wu, H. F.“Comparison of ZnS semiconductor nanoparticles capped with various functional groups as the matrix and affinity probes for rapid analysis of cyclodextrins and proteins in surface-assisted laser desorption/ionization time-of-flight mass spectrometry”Anal Chem. 2008, 80, 9681-8.
(5) Lee, C. H. ; Gopal, J. ; Wu, H. F.“Ionic solution and nanoparticle assisted MALDI-MS as bacterial biosensors for rapid analysis of yogurt”Biosensors and Bioelectronics 2012, 31, 77-83.
(6) Gopal, J. ; Narayana, J. ; Wu, H. F.“TiO2 nanoparticle assisted mass
spectrometry as biosensor of Staphylococcus aureus, key pathogen in nosocomial infections from air, skin surface and human nasal passage”Biosensors and Bioelectronics 2011, 27, 201-206.
(7) Wenk, M. R.“The emerging field of lipidomics”Nat Rev Drug Discov. 2005, 4, 594-610.
(8) Spener F., Lagarde M., Geloen A., Record M.“What is lipidomics?”Eur. J. Lipid Sci Technol 2003, 105, 481-2.
(9) Griffiths, W. J. ; Wang , Y.“Mass spectrometry : from proteomics to
metabolomics and lipidomics”Chem. Soc. Rev. 2009, 38, 1882-1896
(10) Han, X. ; Gross, R. W.“Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics”J. Lipid Res. 2003, 44, 1071-1079.
(11) Klose, C. ; Surma, M. A. ; Gerl, M. J. ; Meyenhofer, F. ; Shevchenko, A. ; Simons, K“Flexibility of a Eukaryotic Lipidome – Insights from Yeast
Lipidomics”PLoS ONE 2012, 7, e35063.
(12) Postle, A. D.“Lipidomics”Curr Opin Clin Nutr Metab Care. 2012, 15, 127-33.
(13) Lee, S. H. ; Blair, I. A.“Targeted chiral lipidomics analysis by liquid
chromatography electron capture atmospheric pressure chemical ionization mass spectrometry (LC-ECAPCI/MS)”Methods Enzymol. 2007, 433, 159–174.
(14) Schiller, J. ; Suss, R. ; Fuchs, B. ; Muller, M. ; Zschornig, O. ; Arnold, K. “MALDI-TOF MS in lipidomics”Front. Biosci. 2007, 12, 2568–79.
(15) Pennanec, X. ; Dufour, A. ; Haras, D. ; Réhel, K.“A quick and easy method to identify bacteria by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry”Rapid Commun Mass Spectrom. 2010, 24, 384-92.
(16) Böhme, K. ; Fernández-No, I. C. ; Barros-Velázquez, J. ; Gallardo, J.
M. ; Calo-Mata, P. ; Cañas, B.“Species differentiation of seafood spoilage and pathogenic gram-negative bacteria by MALDI-TOF mass fingerprinting”J. Proteome Res. 2010, 9, 3169-83
(17) Epand, R. M. ; Epand, R. F.“Bacterial membrane lipids in the action of antimicrobial agents”J. Pept Sci. 2011, 17, 298-305.
(18) Ishida, Y. ; Madonna, A. J. ; Rees, J. C. ; Meetani, M. A. ; Voorhees, K. J. “Rapid analysis of intact phospholipids from whole bacterial cells by
matrix-assisted laser desorption/ionization mass spectrometry combined with on-probe sample pretreatment”Rapid Commun Mass Spectrom. 2002, 16,1877-82.
(19) Gidden, J. ; Denson, J. ; Liyanage, R. ; Ivey, D. M. ; Lay, J. O.“Lipid
Compositions in Escherichia coli and Bacillus subtilis During Growth as
Determined by MALDI-TOF and TOF/TOF Mass Spectrometry”Int J Mass
Spectrom. 2009, 283, 178-184.
(20) Lobasso, S. ; Lopalco, P. ; Angelini, R. ; Vitale, R. ; Huber, H. ; Müller , V. ; Corcelli, A.“Coupled TLC and MALDI-TOF/MS analyses of the lipid
extract of the hyperthermophilic archaeon Pyrococcus furiosus”Archaea. 2012, 957852.
(21) Calvano, C. D. ; Zambonin, C. G. ; Palmisano, F.“Lipid fingerprinting of gram-positive lactobacilli by intact matrix-assisted laser desorption/ionization mass spectrometry using a proton sponge based matrix”Rapid Commun Mass Spectrom. 2011, 25, 1757-64.
(22) McAlpin, C. R . ; Voorhees, K. J. ; Corpuz, A. R. ; Richards, R. M.“Analysis of lipids: metal oxide laser ionization mass spectrometry”Anal. Chem. 2012, 84, 7677-83
(23) Doria, M. L. ; Cotrim, Z. ; Macedo, B. ; Simoes, C. ; Domingues, P. ;Helguero, L. ; Domingues, M. R.“Lipidomic approach to identify patterns in phospholipid profiles and define class differences in mammary epithelial and breast cancer cells”Breast Cancer Res. Treat.2012, 133, 635−648.
(24) Smith, R. E.; Lespi, P.; Di Luca, M.; Busos, C.; Marra, F. A.; deAlaniz, M. J. T.; Marra, C. A.“A reliable biomarker derived from plasmalogens to evaluate malignancy and metastatic capacity of human cancers”Lipids 2008, 43, 79−89.
(25) Griffitts, J.; Saunders, D.; Tesiram, Y. A.; Reid, G. E.; Salih, A.;Liu, S.; Lydic, T. A.; Busik, J. V.“Non-mammalian fat-1 gene prevents neoplasia when introduced to a mouse hepatocarcinogenesis model: Omega-3 fatty acids prevent liver neoplasia”Biochim. Biophys. Acta 2010, 1801, 1133−1144
(26) Schonberg, S. A.; Lundemo, A. G.; Fladvad, T.; Holmgren, K.;Bremseth, H.; Nilsen, A.; Gederaas, O.; Tvedt, K. E.; Egeberg, K. W.;Krokan, H. E.“Closely related colon cancer cell lines display different sensitivity to polyunsaturated fatty acids, accumulate different lipid classes and downregulate sterol regulatory element-binding protein 1”FEBS J. 2006, 273, 2749−2765.
(27) Lee, G. K. ; Lee, H. S. ; Park, Y. S. ; Lee, J. H. ; Lee, S. C.; Lee, J. H. ; Lee, S. J. ; Shanta, S. R. ; Park, H. M. ; Kim, H. R.; Kim, I. H. ; Kim, Y. H. ; Zo, J. I. ; Kim, K. P. ; Kim, H. K.“Lipid MALDI profile classifies non-small cell lung cancers according to the histologic type”Lung Cancer. 2012, 76, 197-203.
(28) Kang, H. S. ; Lee, S. C. ; Park, Y. S. ; Jeon, Y. E.; Lee, J. H. ; Jung, S.Y. ; Park, I. H. ; Jang, S. H. ; Park, H. M. ; Yoo, C. W. ; Park, S. H. ; Han, S. Y. ; Kim, K. P. ; Kim, Y. H. ; Ro, J.; Kim, H. K.“Protein and lipid MALDI profiles classify breast cancers according to the intrinsic subtype”BMC Cancer. 2011, 11: 465.
(29) Pirman, D. A. ; Efuet, E. ; Ding, X. P. ; Pan, Y. ; Tan, L. ; Fischer, S. M. ; DuBois, R. N. ; Yang, P.“Changes in cancer cell metabolism revealed by direct sample analysis with MALDI mass spectrometry”PLoS One. 2013, 8 :e61379.
(30) Kim, I. C. ; Lee, J. H. ; Bang, G. ; Choi, S. H. ; Kim, Y. H. ; Kim, K. P. ; Kim, H. K. ; Ro, J.“Lipid Profiles for HER2-positive Breast Cancer”Anticancer Res. 2013, 33, 2467-72.
(31) Liu, T. Y. ; Chen, Y. ; Wang, H. H.; Huang, Y. L. ; Chao, Y. C. ; Tsai, K. T. ; Cheng, W. C. ; Chuang, C. Y. ; Tsai, Y. H. ; Huang, C. Y. ; Wang, D. W. ; Lin, C. H. ; Wang, J. K. ; Wang, Y. L.“Differentiation of bacteria cell wall using Raman scattering enhanced by nanoparticle array”J. Nanosci.
Nanotechnol. 2012, 12, 5004-8.
(32) Cui, L, ; Chen, P. ; Chen, S. ; Yuan, Z. ; Yu, C. ; Ren, B. ; Zhang, K.“In situ study of the antibacterial activity and mechanism of action of silver nanoparticles by surface-enhanced Raman spectroscopy”Anal. Chem. 2013, 85, 5436-43.
(33) Li, J. M. ; Ma, W. F. ; You, L. J. ; Guo, J. ; Hu, J. ; Wang, C. C.“Highly
sensitive detection of target ssDNA based on SERS liquid chip using suspended magnetic nanospheres as capturing substrates”Langmuir. 2013, 29, 6147-55.

第二章
(1) Sarkar, B. ; Dosch, J. ; Simeone, D. M.“Cancer Stem Cells: A New Theory Regarding a Timeless Disease”Chem. Rev. 2009, 109, 3200–3208.
(2) Cao, Lu. ; Zhou, Y. ; Zhai, B. ; Liao, J. ; Xu, W. ; Zhang, R. ; Li, J. ; Zhang, Y. ; Chen, L. ; Qian, H. ; Wu, M. ; Yin, Z.“Sphere-forming cell subpopulations with cancer stem cell properties in human hepatoma cell lines”BMC Gastroenterol. 2011, 11: 71.
(3) Rahman, M. ; Deleyrolle, L. ; Vedam-Mai, V. ; Azari, H. ; Abd-El-Barr ,
M. ; Reynolds, B. A.“The cancer stem cell hypothesis: failures and pitfalls” Neurosurgery. 2011, 68, 531-45.
(4) Veeravagu, A. ; Bababeygy, S. R. ; Kalani, M. Y. ; Hou, L. C. ; Tse, V.“The cancer stem cell-vascular niche complex in brain tumor formation”Stem Cells Dev. 2008, 17, 859-67.
(5) Seo, D. C. ; Sung, J. M. ; Cho, H. J. ; Yi, H. ; Seo, K. H.; Choi, I. S. ; Kim, D. K. ; Kim, J. S. ; El-Aty, A. M. A. ; Shin, H. C.“Gene expression profiling of cancer stem cell in human lung adenocarcinoma A549 cells”Mol Cancer. 2007, 6:75.
(6) Kanojia, D. ; Zhou, W. ; Zhang, J. ; Jie, C. ; Lo, P. K. ; Wang, Q. ; Chen, H. “Proteomic profiling of cancer stem cells derived from primary tumors of HER2/Neu transgenic mice”Proteomics. 2012, 12, 3407-15.
(7) Barallobre-Barreiro, J. ; Chung, Y. L. ; Mayr, M.“Proteomics and metabolomics for mechanistic insights and biomarker discovery in cardiovascular disease”Rev Esp Cardiol. 2013, pii: S0300-8932(13)00194-2.
(8) Novoselov, K.S. ; Geim, A. K. ; Morozov, S. V. ; Jiang, D. ; Zhang, Y. ; Dubonos, S. V. ; Grigorieva, I. V. ; Firsov, A. A.“Electric field effect in atomically thin carbon films”Science. 2004, 306, 666-9.
(9) Dong, X. ; Cheng, J. ; Li, J. ; Wang, Y.“Graphene as a novel matrix for the analysis of small molecules by MALDI-TOF MS”Anal. Chem. 2010, 82,
6208-14.
(10) Tang, L. A. ; Wang, J. ; Loh, K. P.“Graphene-based SELDI probe with ultrahigh extraction and sensitivity for DNA oligomer”J. Am. Chem. Soc. 2010, 132, 10976-7.
(11) Liu, Y. ; Liu, J. ; Deng, C. ; Zhang, X.“Graphene and graphene oxide: two ideal choices for the enrichment and ionization of long-chain fatty acids free from matrix-assisted laser desorption/ionization matrix interference” Rapid Commun Mass Spectrom. 2011, 25, 3223-34.
(12) Hummers, W. S. ; Offeman, R. E.“Preparation of Graphitic Oxide”J. Am. Chem. Soc. 1958, 80, 1339-1339.
(13) Abdelhamid, H. N.; Wu, H. F.“A method to detect metal-drug complexes and their interactions with pathogenic bacteria via graphene nanosheet assist laser desorption/ionization mass spectrometry and biosensors”Anal Chim Acta. 2012, 751, 94-104.
(14) Folch, J.; Lees, M. ; Sloane Stanley, G. H.“A simple method for the isolation and purification of total lipides from animal tissues”J. Biol. Chem. 1957, 226, 497-509.
(15) Xiang, F.; Beavis, R. C.“A method to increase contaminant tolerance in protein matrix-assisted laser desorption/ionization by the fabrication of thin protein-doped polycrystalline films ”Rapid Commun. Mass Spec. 1994, 8, 199-204.
(16) Abdelhamid, H. N.; Wu, H. F.“Multifunctional graphene magnetic nanosheet decorated with chitosan for highly sensitive detection of pathogenic bacteria” J.Mater.Chem.B. 2013, DOI: 10.1039/C3TB20413H
(17) Gopal, J. ; Abdelhamid, H. N. ; Hua, P. Y. ; Wu, H. F.“Chitosan nanomagnets for effective extraction and sensitive mass spectrometric detection of pathogenic bacterial endotoxin from human urine”J.Mater.Chem.B 2013, 1, 2463-2475.
(18) Kang, H. S. ; Lee, S. C. ; Park, Y. S. ; Jeon, Y. E.; Lee, J. H. ; Jung, S.Y. ; Park, I. H. ; Jang, S. H. ; Park, H. M. ; Yoo, C. W. ; Park, S. H. ; Han, S. Y. ; Kim, K. P. ; Kim, Y. H. ; Ro, J.; Kim, H. K.“Protein and lipid MALDI profiles classify breast cancers according to the intrinsic subtype”BMC Cancer.2011, 11, 465.
(19) Schiller, J. ; Süss, R. ; Arnhold, J. ; Fuchs, B. ; Lessig, J. ; Müller, M. ; Petković, M. ; Spalteholz, H. ; Zschörnig, O. ; Arnold, K.“Matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectrometry in lipid and phospholipid research”Prog Lipid Res. 2004, 43, 449-88.
(20) Baker, M. J. ; Zheng, L. ; Winograd, N. ; Lockyer, N. P. ; Vickerman, J. C. “Mass spectral imaging of glycophospholipids, cholesterol, and glycophorin a in model cell membranes” Langmuir.2008, 24, 11803-11810.
(21) Zhou, X.; Wei, Y.; He, Q.; Boey, F.; Zhang, Q. H.;Zhang, H.“Reduced graphene oxide films used as matrix of MALDI-TOF-MS for detection of octachlorodibenzo-p-dioxin”Chem. Commun. 2010, 46, 6974.
(22) Zhang, J. ; Dong, X. L. ; Cheng, J. S. ; Li, J. H. ; Wang, Y. S.“Efficient analysis of non-polar environmental contaminants by MALDI-TOF MS with graphene as matrix”J. Am. Soc. Mass Spectrom. 2011, 22,1294.
(23) Frost, R. ; Jönsson, G. E. ; Chakarov, D. ; Svedhem, S. ; Kasemo, B.“Graphene oxide and lipid membranes: interactions and nanocomposite structures”Nano Lett. 2012, 12, 3356-62.
(24) Liu, S. J. ; Wen, Q. ; Tang, L. J. ; Jiang, J. H.“Phospholipid-graphene
nanoassembly as a fluorescence biosensor for sensitive detection of phospholipase D activity”Anal Chem. 2012, 84, 5944-50.
(25) Pykal, M. ; S a ov . ; S is kov K. M. ; Jurec ka, P. ; Bourlinos, A. B. ; Zbor il, R. ; Otyepka, M.“Lipid Enhanced Exfoliation for Production of Graphene Nanosheets”J. Phys. Chem. C 2013, 117 11800−11803.

第三章
(1) Daniel, M. C. ; Astruc, D.“Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology”Chem. Rev. 2004, 104, 293–346.
(2) Redl, F. X. ; Black, C. T.; Papaefthymiou, G. C.; Sandstrom, R. L.; Yin, M.; Zeng H.; Mu ay C. B. ; O’B ien S. P.“Magnetic, electronic, and structural characterization of nonstoichiometric iron oxides at the nanoscale”J. Am.Chem. Soc. 2004, 126, 14583–14599.
(3) Lara, H.H.; Garza-Treviño, E.N. ; Ixtepan-Turrent, L.; Singh, D. K.“Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds” J.Nanobiotechnology 2011, 9: 30
(4) Tran, N. ; Mir, A. ; Mallik ,D. ; Sinha, A. ; Nayar , S. ; Webster, T. J.
“Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus” Int J Nanomedicine.2010, 5, 277–283.
(5) Manikandan, M.; Wu, H. F.“Rapid probing the fungicidal and biological role of CdS quantum dots in Saccharomyces cereviciae and Candida utilis by MALDI-TOF MS”J. Nanopart. Res. 2013 DOI:10.1007/s11051-013-1728-9.
(6) Praetorius, N. P.; Mandal, T. K.“Engineered nanoparticles in cancer therapy” Recent Pat. Drug Deliv. Formul. 2007, 1, 37–51.
(7) Zhang, L. ; Gu, F.X. ; Chan, J.M. ; Wang, A.Z. ; Langer, R.S. ; Farokhzad, O.C. “Nanoparticles in medicine: therapeutic applications and developments” Clin. Pharmacol Ther. 2008, 83, 761-69.
(8) Jiang, P.; Zhou, J. J.; Fang, H. F.; Wang, C. Y.; Wang, Z. L.; Xie, S. S.
“Hierarchical Shelled ZnO Structures Made of Bunched Nanowire Arrays”Adv. Funct. Mater. 2007, 17, 1303-1310.
(9) Zhou, J.; Xu, N. S.; Wang, Z. L.“Dissolving Behavior and Stability of ZnO Wires in Biofluids: A Study on Biodegradability and Biocompatibility of ZnO Nanostructures”Adv. Mater. 2006, 18, 2432-2435.
(10) Ito, M.“In vitro properties of a chitosan-bonded hydroxyapatite bone-filling paste”Biomaterials. 1991, 12, 41-5.
(11) Gopal, J. ; Manikandan, M. ; Hasan, N. ; Wu, H. F.“Bacterial
toxicity/compatibility of platinum nanospheres, nanocuboids and nanoflowers” Sci.Rep. 2013, 3: 1260.
(12) Manikandan, M. ; Hasan, N. ; Wu, H. F.“Platinum nanoparticles for the photothermal treatment of Neuro 2A cancer cells”Biomaterials. 2013, 34, 5833-42.
(13) Xia, H. L.; Tang, F. Q.“Toxicological effect of ZnO nanoparticles based on bacteria”Langmuir. 2008, 24, 4140-4.
(14) Patra, M. K. ; Manoth, M. ; Singh, V. K. ; Siddaramana Gowd, G. ; Choudhry, V. S. ; Vadera, S. R. ; Kumar, N.“Synthesis of stable dispersion of ZnO quantum dots in aqueous medium showing visible emission from bluish green to yellow” J. Luminescence 2009, 129, 320–324.
(15) Zhang, W. Q. ; Lu, Y. ; Zhang, T. K. ; Xu, W. ; Zhang, M. ; Yu, S. H.“Controlled Synthesis and Biocompatibility of Water-Soluble ZnO Nanorods/Au Nanocomposites with Tunable UV and Visible Emission Intensity”J. Phys. Chem. C 2008, 112, 19872–19877.
(16) Bligh, E. G. ; Dyer, W. J.“A rapid method of total lipid extraction and
purification”Can. J. Biochem. Physiol. 1959, 37, 911-917.
(17) Gopal, J. ; Wu, H. F. ; Lee, Y. H.“Matrix-assisted laser desorption
ionization-time-of-flight mass spectrometry as a rapid and reliable technique for directly evaluating bactericidal activity: probing the critical concentration of ZnO nanoparticles as affinity probes”Anal. Chem. 2010, 82, 9617-9621.

第四章
(1) Nikaido, H.“Bacterial outer membranes: biogenesis and functions”
biogenesis and functions, ed. M. Inouye, John Wiley & Sons, Inc., New York, 1979, pp. 361–405.
(2) Nikaido, H. ; Nakae, T.“The outer membrane of Gram-negative bacteria” Adv. Microb. Physiol. 1979, 19, 163–250.
(3) Qiu, X. ; Liu, M. ; Sunada, K. ; Miyauchi, M. ; Hashimoto, K.“A facile
one-step hydrothermal synthesis of rhombohedral CuFeO2 crystals with antivirus property”Chem. Commun. 2012, 48, 7365–7367.
(4) Chen, J. P. ; Yang, P. C. ; Ma, Y. H. ; Wu, T.“Characterization of chitosan magnetic nanoparticles for in situ delivery of tissue plasminogen activator” Carbohydr. Polym. 2011, 84, 364–372.
(5) Kaushik, A. ; Khan, R. ; Solanki, P. R.; Pandey, P. ; Alam, J. ; Ahmad, S. ; Malhotra, B. D.“Iron oxide nanoparticles-chitosan composite based glucose biosensor”Biosens. Bioelectron.2008, 24, 676–683.
(6) Gopal, J. ; Abdelhamid, H.N. ; Hua, P.Y. ; Wu, H.F.“Chitosan nanomagnets for effective extraction and sensitive mass spectrometric detection of pathogenic bacterial endotoxin from human urine”J.Mater.Chem.B 2013, 1, 2463-2475.
(7) Shroff, R. ; Muck, A. ; Svatos, A.“Analysis of low molecular weight acids by negative mode matrix-assisted laser desorption/ionization time-of-flight mass spectrometry”Rapid Commun. Mass Spectrom. 2007, 21, 3295–3300.
(8) Manikandan, M. ; Hasan, N. ; Wu, H. F.“Rapid and direct detection of
attomole adenosine triphosphate (ATP) by MALDI-MS using rutile titania
chips”Analyst 2012, 137, 5128–5134.
(9) Coats, S. R. ; Berezow, A. B. ; To, T. T. ; Jain, S. ; Bainbridge, B. W. ; Banani, K. P. ; Darveau, R. P.“The lipid A phosphate position determines differential host Toll-like receptor 4 responses to phylogenetically related symbiotic and pathogenic bacteria”Infect. Immun.2011, 79, 203–210.
(10) Wu, H. F. ; Gopal, J. ; Abdelhamid, H. N. ; Hasan, N.“Quantum dot
applications endowing novelty to analytical proteomics”Proteomics 2012, 12, 2949–2961.
(11) Mielniczuk, Z. ; Mielniczuk, E. ; Larsson, L.“Characterization of
Lipopolysaccharides Present in Settled House Dust”J. Microbiol. Methods
1993, 17, 91–102.
(12) Hsu, F. F. ; Turk, J.“Characterization of cardiolipin from Escherichia coli by electrospray ionization with multiple stage quadrupole ion-trap mass spectrometric analysis of [M - 2H + Na]- ions”J. Am. Soc. Mass Spectrom. 2006, 17, 420–429.
(13) Minkler, P. E. ; Hoppel, C. L.“Separation and characterization of cardiolipin molecular species by reverse-phase ion pair high-performance liquid chromatography-mass spectrometry”J. Lipid Res. 2010, 51, 856–865.
(14) Tyurin, V. A. ; Tyurina, Y. Y. ; Jung, M. Y. ; Tungekar, M. A. ; Wasserloos, K. J. ; Bayir, H. ; Greenberger, J. S. ; Kochanek, P. M. ; Shvedova, A. A. ; Pitt B. ;Kagan, V. E.“Mass-spectrometric analysis of hydroperoxy- and hydroxy-derivatives of cardiolipin and phosphatidylserine in cells and tissues induced by pro-apoptotic and pro-inflammatory stimuli”J. Chromatogr., B: Anal. Technol. Biomed. Life Sci. 2009, 877, 2863–2872.
(15) Wang, H. Y. ; Jackson, S. N. ; Woods, A. S.“Direct MALDI-MS analysis of cardiolipin from rat organs sections”J. Am. Soc. Mass Spectrom. 2007, 18, 567–577.
(16) Zhou, Z. ; Lin, S. ; Cotter, R. J. ; Raetz, C.“Lipid A modifications
characteristic of Salmonella typhimurium are induced by NH4VO3 in
Escherichia coli K12. Detection of 4-amino-4-deoxy-L-arabinose,
phosphoethanolamine and palmitate”J. Biol. Chem.1999, 274, 18503–18514.
(17) Therisod, H. ; Monteiro, M. ; Perry, M. ; Caroff, M.“Helicobacter mustelae lipid A structure differs from that of Helicobacter pylori”FEBS Lett. 2001, 499, 1–5.
(18) Kelly, J. ; Masoud, H. ; Perry, M. ; Richards, J. ; Thibauld, P.“Separation and characterization of O-deacylated lipooligosaccharides and glycans derived from Moraxella catarrhalis using capillary electrophoresis-electrospray mass spectrometry and tandem mass spectrometry”Anal. Biochem.1996, 233, 15–30.
(19) Ross, M. M. ; Neihof, R. A. ; Campana, J. E.“Direct fatty acid profiling of complex lipids in intact algae by fast-atom-bombardment mass
spectrometry”Anal. Chem. Acta 1986, 181, 149–157.
(20) Heller, D. N.; Fenselau, C.; Cotter, R. J.; Demirev, P. ; Olthoff, J. K. ;
Honovich, J. ; Uy, O. M. ; Tanaka, T. ; Kishimoto, Y.“Mass spectral analysis of complex lipids desorbed directly from lyophilized membranes and cells” Biochem. Biophys. Res. Commun.1987, 142, 2806–2809.
(21) Heller, D. N. ; Cotter, R. J. ; Fenselau, C. ; Uy, O. M.“Profiling of bacteria by fast atom bombardment mass spectrometry”Anal. Chem.1987, 59, 2806–2809.
(22) Caroff, M. ; Deprun, C. ; Karibian, D.“252Cf plasma desorption mass
spectrometry applied to the analysis of underivatized rough-type endotoxin preparations”J. Biol. Chem.1993, 268, 12321–12324.
(23) Yi, H. ; Wu, L. L. ; Bentley, W. E. ; Ghodssi, R. ; Rubloff, G. W. ; Culver, J. N. ; Payne, D. F.“Biofabrication with chitosan”Biomacromolecules 2005, 6, 2881–2894.
(24) Herrmann, I. K. ; Urner, M. ; Graf, S. ; Schumacher, C. M. ; Roth-Z'graggen, B. ; Hasler, M. ; Stark, W. J. ; Beck- Schimmer, B.“Endotoxin removal by magnetic separationbased blood purification”Adv. Healthcare Mater.2012, 6, 1–7.

第五章
(1) Chang, C. W.; Chu, S. P. ; Tseng, W. L.“Selective extraction of melamine using 11-mercaptoundecanoic acid–capped gold nanoparticles followed by capillary electrophoresis”J. Chromatogr. A 2010, 1217, 7800-7806.
(2) Tsuji, M.; Jianga, P. ; Hikinoa, S. ; Lima, S. ; Yanob, R. ; Jangb, S. M. ; Yoona, S. H. ; Ishigamib, N. ; Tanga, X. ; Kamarudin, K. S. N.“Toward to branched platinum nanoparticles by polyol reduction: A role of poly(vinylpyrrolidone) molecules”Colloids Surf. A. 2008, 317, 23–31.
(3) Ahmadi, T. S.; Wang, Z. L.; Henglein, A.; El-Sayed, M. A.““Cubic” Colloidal Platinum Nanoparticles”Chem. Mater. 1996, 8, 1161–1163.
(4) Koebel, M. M.; Jones, L. C.; Somorjai, G. A.“Preparation of size-tunable, highly monodisperse PVP-protected Pt-nanoparticles by seed-mediated growth” J. Nanopart Res.2008, 10, 1063–1069.
(5) Bligh, E. G. ; Dyer, W. J.“A rapid method of total lipid extraction and
purification”Can. J. Biochem. Physiol. 1959, 37, 911-917.
(6) Gopal, J. ; Abdelhamid, H. N. ; Hua, P. Y. ; Wu, H. F.“Chitosan nanomagnets for effective extraction and sensitive mass spectrometric detection of pathogenic bacterial endotoxin from human urine” J.Mater.Chem.B 2013, 1, 2463-2475.
(7) Notingher, I.“Raman Spectroscopy Cell-based Biosensors”Sensors 2007, 7, 1343-1358.
(8) Wu, H.; Volponi, J.V.; Oliver, A. E.; Parikh, A. N.; Simmons, B. A.; Singh, S. “In vivo lipidomics using single-cell Raman spectroscopy”Proc Natl Acad Sci U S A. 2011, 108, 3809-14.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.147.65.65
論文開放下載的時間是 校外不公開

Your IP address is 3.147.65.65
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code