Responsive image
博碩士論文 etd-0714113-171419 詳細資訊
Title page for etd-0714113-171419
論文名稱
Title
寬槽孔多重輸入輸出天線整合電磁帶隙反射板於多重輸入輸出雷達之應用
Wide-Slot MIMO Antennas with Electromagnetic Band-Gap Reflector for Wideband MIMO Radar Applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
67
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-20
繳交日期
Date of Submission
2013-08-14
關鍵字
Keywords
EBG反射板、寬槽孔天線、MIMO天線、MIMO雷達、電磁帶隙
Wide-slot antenna, EBG Reflector, MIMO RADAR, EBG
統計
Statistics
本論文已被瀏覽 5707 次,被下載 1684
The thesis/dissertation has been browsed 5707 times, has been downloaded 1684 times.
中文摘要
本論文之研究的目的在於寬頻多重輸入輸出(Multi-Input Multi-Output, MIMO)雷達天線的設計,MIMO雷達與傳統相位陣列雷達比較之下有好的物體偵測性、較精確的角度估算以及較低的速度偵測性能。基於以上MIMO雷達的優勢,以及文獻提出應用寬頻的訊號於雷達系統也能夠加強雷達的性能,本研究係設計一個寬頻單一指向性的MIMO天線應用於MIMO雷達系統之上。
為達成上述之天線性能要求,我們使用寬槽孔天線達成操作在C頻帶的寬頻需求;而單一方向輻射的特性則是利用電磁帶隙(electromagnetic band-gap, EBG)作為反射板使背向輻射的能量轉為正向。此外為達到MIMO的操作特性,天線之間的隔離度也是必須要考量的因素之一,因此我們利用一個平面螺旋形的槽線做為一個共振器來增強天線間的隔離效果。
本天線系統最終的阻抗百分頻寬為46.2%,並且在此頻寬內隔離度維持在15 dB以下。
Abstract
This thesis investigates antenna design for wideband multi-input multi-output (MIMO) radar system applications. The advantages of MIMO radar are excellent in target detectable performance, good in angular estimation accuracy and decreased minimum detectable velocity ability. In recently proposed literature, using wideband signals could enhance the performance in detection for MIMO radar systems. Therefore we design a MIMO antenna with a wide frequency bandwidth and uni-directional radiation pattern for MIMO radars.
To achieve the requirement mentioned above, we adopt the wide-slot antenna for wide bandwidth that operates within C band and use electromagnetic band-gap (EBG) structure as reflector for uni-directional radiation to reflect energy into forward direction. Additionally, we introduce a spiral slot as a resonator to enhance the isolation for the sake of MIMO operations.
The impedance bandwidth of the proposed antenna system is 46.2% with uni-directional radiation pattern and the isolation between two antenna elements is above 15 dB, which is acceptable within the operating band.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖次 vii
表次 x
第一章 緒論 1
1.1 研究動機 1
1.2 研究方法 2
1.3 相關文獻概況 2
1.4 論文大綱 3
第二章 MIMO寬槽孔天線設計 4
2.1 寬槽孔天線設計 4
2.2 MIMO天線隔離度設計 8
2.3 實做測量與討論 12
第三章EBG反射板之設計 20
3.1 EBG基本介紹及其應用 20
3.2 單一晶胞的設計 21
3.3 反射板縮小化 24
第四章 天線與反射板之結合與隔離度加強 28
4.1 天線與反射板的結合 28
4.2 不同型態反射板對於天線效能的討論 37
4.3 輻射場型穩定度的探討 40
4.4 實做測量與討論 46
第五章 結論 53
參考文獻 54
參考文獻 References
[1] D. Gesbert, M. Shafi, D. S.Shiu, P. J. Smith and A. Naguib, “From theory to practice: an overview of MIMO space-time coded wireless systems,” IEEE J. Sel. Areas Commun., vol. 21, no. 3, pp. 281-301, April 2003.
[2] E. Fishler, A. Haimovich, R. Blum, D. Chizhik, L. Cimini, and R. Valenzuela, “MIMO radar: An idea whose time has come,” in Proc. IEEE Radar Conf., pp. 71–78, April 2004.
[3] Jian Li and Petre Stoica, MIMO Radar Signal Processing, New Jersey: John Wiley & Sons, 2009.
[4] J. Zhang, H. Wang and X. Zhu, “Adaptive waveform design for separated transmit/receive ULA-MIMO radar,” IEEE Trans. Signal Process., vol. 58, no. 9, September 2010.
[5] H. He, P. Stoica and J. Li, ”Designing unimodular sequence sets with good correlations – including an application to MIMO radar,” IEEE Trans. Signal Process., vol. 57, no. 11, November 2009.
[6] G. Hua and S. S. Abeysekera, “Receiver design for range and Doppler sidelobe suppression using MIMO and phased-array radar,” IEEE Trans. Signal Process., vol. 61, no. 6, pp. 1315 - 1326, March 2013.
[7] H. He, P. Stoica and J. Li, “Wideband MIMO systems: Signal design for transmit beampattern synthesis,” IEEE Trans. Signal Process., vol. 59, no. 2, pp. 618-628, February 2011.
[8] H. Chen, X. Li, W. Jiang and Z. Zhuang, “MIMO radar sensitivity analysis of antenna position for direction finding,” IEEE Trans. Signal Process., vol. 60, no. 10 pp. 5201-5216, October 2012,.
[9] H. Chen, X. Li, and Z. Zhuang, “Antenna geometry conditions for MIMO radar with uncoupled direction estimation,” IEEE Trans. Antennas Propag., vol. 60, no. 7, pp. 3455-3465, July 2012.
[10] Q. He, R. S. Blum, A. M. Haimovich, “Noncoherent MIMO radar for location and velocity estimation: More antennas means better performance,” IEEE Trans. Signal Process., vol. 58, no. 7, pp. 3661-3680, July 2010.
[11] D. Wang, X. Ma, A. Chen and Y. Su, “High-resolution imaging using a wideband MIMO radar system with two distributed arrays,” IEEE Trans. Image Process., vol. 19, no. 5, pp. 1280-1289, May 2010.
[12] IEEE Xplore® DIGITAL LIBRARY, [Online]. Available: http://www.ieeexplore.ieee.org/
[13] J. Dong, Q. Li and W. Guo, “A combinatorial method for antenna array design in minimum redundancy MIMO radars,” IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 1150-1153, 2009.
[14] W. J. Chen and R. M. Narayanan, “Antenna placement for minimizing target localization error in UWB MIMO noise radar,” IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 135-138, 2011.
[15] F. Belfiori, W. V. Rossum and P. Hoogeboom, “Coherent MIMO array design with periodical physical element structures,” IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 1134-1144, 2011.
[16] H. Chen, J. Yang, W. Zhou, H. Wang and X. Li, “On unique localization of multiple targets by MIMO radars,” IEEE Antennas Wireless Propag. Lett., vol. 11, pp. 949-952, 2012.
[17] X. Zhuge and A. G. Yarovoy, “Sparse multiple-input multiple-output arrays for high-resolution near-field ultra-wideband imaging,” IET Microw. Antennas Propag., vol. 5, iss. 13, pp. 1552-1562, 2011.
[18] D. M. Pozar, “Microstrip antennas,” Proc. IEEE, vol. 80, no. 1, pp.70-91, 1992.
[19] K. F. Lee, K. M. Luk, K. F. Tong, S. M. Shum, T. Huynh and R. Q. Lee, “Experimental and simulation studies of the coaxially fed U-slot rectangular patch antenna,” IEE Proc. Microw. Antennas Propag., vol. 144, no. 5, pp. 354-358, 1997.
[20] K. M. Luk, C. L. Mak, Y. L. Chow and K. F. Lee, “Broadband patch antenna,” Electron. Lett., vol. 34, pp. 1442-1443, 1998.
[21] J. Y. Sze and K. L. Wong, “Bandwidth enhancement of a microstrip-line-fed printed wide-slot antenna,” IEEE Trans. Antennas Propag., vol. 49, no. 7, pp. 1020-1024, July 2001.
[22] M. Sonkki and E. Salonen, “Low mutual coupling between monopole antennas by using two λ/2 slots,” IEEE Antennas Wireless Propag. Lett., vol. 9, pp. 138-141, 2010.
[23] C. Y. Chiu, C. H. Cheng, R. D. Murch and C. R. Rowell, “Reducetion of mutual coupling between closely-packed antenna elements” IEEE Trans. Antennas Propag., vol. 55, no. 6, pp. 1732-1738, June 2007.
[24] S. W. Su, C. T. Lee and F. S. Chang, “Printed MIMO-antenna system using neutralization-line technique for wireless USB-dongle applications” IEEE Trans. Antennas Propag., vol. 60, no. 2, pp. 456-463, February 2012.
[25] F. Yang and Y. Rahamt-Samii, “Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications,” IEEE Trans. Antennas Propag., vol. 51, no. 10, pp. 2936-2946, October 2003.
[26] J. M. Lee, K. B. Kim, H. K. Ryu and J. M. Woo, “A compact ultrawideband MIMO antenna with WLAN band-rejected operation for mobile devices,” IEEE Antennas Wireless Propag. Lett., vol. 11, pp. 990-993, 2012.
[27] J. Park, J. Choi, J. Y. Park and Y. S. Kim, “Study of a T-shaped slot with a capacitor for high isolation between MIMO antennas,” IEEE Antennas Wireless Propag. Lett., vol. 11, pp. 1541-1544, 2012.
[28] 慧守科技股份有限公司 [Online]. Available: http://www.wellshow.com/
[29] R. Gonzalo, P. Maagt and M. Sorolla, “Enhanced patch-antenna performance by suppressing surface wave using photonic-bandgap substrates,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 11, pp. 2131-2138, November 1999.
[30] D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolous and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 11, pp. 2059-2074, November 1999.
[31] A. Yu and X. Zhang, “A low profile monopole antenna using a dumbbell EBG structure,” IEEE APS Int. Symp. Dig.,vol. 2, pp. 1155-1158, June 2004.
[32] L. Leger, T. Monediere and B. Jecko, “Enhancement of gain and radiation bandwidth for a planar 1-D EBG antenna,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 9, pp.573-575, September 2005.
[33] F. Yang and Y. Rahmat-Samii, Electromagnetic Band Gap Structures in Antenna Engineering. New York: Cambridge University Press, 2009.
[34] D. K. Cheng, Field and Wave Electromagnetics. Addison-Wesley, 1989.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code