Responsive image
博碩士論文 etd-0714113-180302 詳細資訊
Title page for etd-0714113-180302
論文名稱
Title
M面氮化鎵發光二極體元件製程改良與分析
Fabrication Improvements and Analyses of m-GaN Light Emitting Diodes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
101
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-24
繳交日期
Date of Submission
2013-08-14
關鍵字
Keywords
發光二極體、氮化銦鎵、非極化、m面藍寶石基板
m-plane sapphire, nonpolar, InGaN, light emitting diodes
統計
Statistics
本論文已被瀏覽 5697 次,被下載 555
The thesis/dissertation has been browsed 5697 times, has been downloaded 555 times.
中文摘要
在這篇論文中,我們利用電漿輔助分子束磊晶在m面藍寶石基板上,成長m面氮化鎵薄膜,在成長的過程中,Ⅴ/Ⅲ比與成長溫度為調控的變因,藉由調變這兩種參數,成長出品質較好的薄膜,以利探討其各向異性特性。
在進行藍光發光二極體製程之前,我們利用硫化的方法對氮化鎵做表面處理,並用電子槍蒸鍍金屬電極於氮化鎵上,以傳輸線模型(TLM)量測不同表面處理下氮化鎵之特徵接觸電阻(Specific contact resistance)值ρc,藉此找出形成良好歐姆接觸之條件,接著以霍爾棒量測(Hall bar measurement)不同方向載子遷移率,以探討載子傳輸時較不會遇到阻力的方向,使之展現出良好的元件特性。
M面氮化銦鎵藍光發光二極體(p-GaN/InGaN/n-GaN),雙異質接面pin結構,薄膜之結構特性是使用X光繞射儀觀測,並以硫化銨去除表面原生氧化層,以增加電流特性,經由黃光微影製程後氮化鎵發光二極體,量測其不同電流下,電流電壓特性之關係。
Abstract
M-plane GaN on the m-sapphire grown by plasma assisted molecular beam epitaxy (PAMBE) have been achieved. Ⅴ/Ⅲ ratio and growth temperature are the most important factors in the growth sequence.
The surface of m-plane GaN was treated by (NH4)2S and annealing for ohmic contact condition. The specific contact resistance of m-plane p-GaN was calculated by TLM model. Furthermore, the anisotropic characteristic of p-GaN mobility was obtained by hall bar measurement.
M-plane GaN based light-emitting diode was also fabricated through the photolithography process. The surface treatment effects was also discussed.
目次 Table of Contents
目錄
中文摘要
Abstract
圖目錄
第一章 序論 1
1.1 文獻回顧 1
1.2非極性面氮化鎵發光二極 4
1.3 目前成長m面GaN之進展 9
第二章 儀器介紹 10
2.1 分子束磊晶Plasma assisted molecular beam epitaxy (PAMBE) 10
2.2掃描式電子顯微鏡Scanning Electron Microscopy (SEM) 14
2.3 X光繞射儀(X-ray Diffraction, XRD) 16
2.4 感應耦合式電漿(Inductively-Coupled-Plasma, ICP) 19
2.5電子槍蒸鍍機 Electron beam (E-beam) 20
2.6 Van der Pauw 法量電阻率 23
第三章 m-GaN薄膜成長 27
3.1成長前之基板處理 27
3.2 M面GaN薄膜之成長 28
3.2.1 掃描式電子顯微鏡 28
3.2.2 X光繞射儀 30
3.3 M面GaN:Mg薄膜之成長 35
第四章M面GaN:Mg薄膜之分析 39
4.1 p-GaN歐姆接觸 39
4.2 TLM元件製程與量測方法 40
4.2.1樣品選取 40
4.2.2硫化處理步驟 40
4.2.3蒸鍍鎳(Ni)/金(Au)金屬電極 40
4.2.4傳輸線模型(transmission line model, TLM) 41
4.3數據分析與探討 42
4.4 載子遷移率之各向異性探討 46
4.4.1 載子的遷移率(carrier mobility) 46
4.4.2 霍爾棒量測 46
4.4.3 霍爾棒量測數據探討 50
第五章 M面p-GaN/InGaN/n-GaN 發光二極體之元件製程 52
5.1氮化銦鎵樣品結構 52
5.2 發光二極體元件製程 53
5.2.1 高台製作(Mesa) 54
5.2.2蝕刻高台(Etching Mesa) 58
5.2.3 n型電極製作 60
5.2.4 Ni(鎳)/Au(金)雙金屬薄層 62
5.2.5 p型電極製作 63
5.3 I-V curve量測 71
第六章 結論 76
參考文獻 77
附錄一 81
附錄二 88
參考文獻 References
[1] H. J. Round. Electrical World. vol. 49, p. 309, (1907).
[2] N. Holonyak Jr. and S. F. Bevacqua, Appl. Phys. Lett., vol. 1, pp. 82-83, (1962).
[3] S. Yoshida, S. Misawa, and S. Gonda, J. Vac. Sci. Tech. B., vol. 1, p. 250, (1983).
[4] N. Sawaki, I. Akasaki, and Y. Toyoda, Appl. Phys. Lett., vol. 48, p. 353, (1986).
[5] S. Nakamura, M. Senoh, T. Mukai, Jpn. J. Appl. Phys., vol. 30, p. 1708, (1991).
[6] Y. Ohshita, N. Sawaki, I. Akasaki, Solid State Communications, vol. 57, p. 405, (1986).
[7] S. Nakamura, M. Senoh, and T. Mukai, Jpn. J. Appl. Phys. Part 2-Lett., vol.32, p. 8, (1993).
[8] Nikkei Sangyo Shimbun, Nov. 30, (1993).
[9] T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, Jpn. J. Appl. Phys., vol. 36, p. 382, (1997).
[10] S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, Appl. Phys. Lett., vol. 69, p. 4188, (1996).
[11] R. Dingle, D. D. Sell, S. E. Stokowski, and M. Ilegems, Phys. Rev.B.,vol. 4, p.
1211, (1971).
[12] K. Horino, A. Kuramata, K. Domen, R. Soejima, and T. Tanahashi. Int. Symposium on Blue Laser and Light Emitting Diodes, p. 530, (1996).
[13] K. Domen, K. Horino, A. Kuramata, and T. Tanahashi, 15th IEEE Int. Semiconductor Laser Conference Digest, p. 149, (1996).
[14] K. Domen, K. Horino, A. Kuramata, and T. Tanahashi, IEEE J. Select. Top. Quantum Electron., vol. 3, p. 450, (1997).
[15] P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, Nature (London), vol. 406, p.865, (2000).
[16] Y. J. Sun, O. Brandt, M. Ramsteiner, H. T. Grahn, and K. H. Ploog, Appl. Phys. Lett., vol. 82, p.3850, (2003).
[17] B. Rau, P. Waltereit, O. Brandt, M. Ramsteiner, K. H. Ploog, J. Puls, and F. Henneberger, Appl. Phys. Lett., vol. 77, p. 3343, (2000).
[18] T. Koida, S. F. Chichibu, T. Sota, M. D. Craven, B. A. Haskell, J. S. Speck, S. P. DenBaars, and S. Nakamura, Appl. Phys. Lett., vol. 84, p. 3768, (2004).
[19] K. B. Nam, J. Li, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett., vol. 84, p. 5264, (2004).
[20] A. Chitnis, C. Chen, V. Adivarahan, M. Shatalov, E. Kuokstis, V. Mandavilli, J. Yang, and M. A. Khan, Appl. Phys. Lett., vol. 84, p. 3663, (2004).
[21] A. Chakraborty, B. A. Haskell, S. Keller, J. S. Speck, S. P. DenBaars, S. Nakamura, and U. K. Mishra, Appl. Phys. Lett.,vol. 85, p. 5143, (2004).
[22] A. Chakraborty, B. A. Haskell, S. Keller, J. S. Speck, S. P. DenBaars, S. Nakamura, and U. K. Mishra, Jpn. J. Appl. Phys., vol. 44, p. 173, (2005).
[23] N. F. Gardner, J. C. Kim, J. J. Wierer, Y. C. Shen, and M. R. Krames, Appl. Phys. Lett., vol. 86, p. 111101, (2005).
[24] H. Masui, A. Chakraborty, B. A. Haskell, U. K. Mishra, J. S. Speck, S. Nakamura, and S. P. DenBaars, Jpn. J. Appl. Phys.,vol. 44, p. 1329, (2005).
[25] R. Sharma, P. M. Pattison, H. Masui, R. M. Farrell, T. J.Baker, B. A. Haskell, F. Wu, S. P. DenBaars, J. S. Speck,and S. Nakamura, Appl. Phys. Lett., vol. 87, p. 231110, (2005).
[26] H. Masui, T. J. Baker, M. Iza, H. Zhong, S. Nakamura, andS. P. DenBaars, J. Appl. Phys., vol. 100, p. 113109, (2006).
[27] K.-C. Kim1, M. C. Schmidt, H. Sato, F. Wu, N. Fellows, M. Saito, K. Fujito, J. S. Speck, S. Nakamura, and S. P. DenBaars, phys. stat. sol. (RRL) 1, No. 3, 125–127 (2007)
[28] X. Li, X. Ni, J. Lee, M. Wu, Ü. Özgür, H. Morkoç,T. Paskova, G. Mulholland, and K. R. Evans, Appl. Phys. Lett., 95, 121107, (2009).
[29] Ugo Lafont, Henk van Zeijl , Sybrand van der Zwaag, Microelectronics Reliability 52,71–89, (2012).
[30] Rohm Blue-Violet Laser to Halve Dissipation Nikkei Electronics Asia May (2007).
[31] Y. Honda, Y. Iyechika, T. Maeda, H. Miyakei and K. Hiramatsui, Jpn.J.Appl. Phys. vol. 40, pp. L309–L312, (2001).
[32] N. Nanhui, W. Huaibing, L. Jianping, L. Naixin, X. Yanhui, H. Jun, D. Jun, S. Guangdi, Solid-State Electronics, vol.51, p. 860, (2007).
[33] T. Onuma, H. Amaike, M. Kubota, K. Okamoto, H. Ohta, J. Ichihara, H. Takasu, and S. F. Chichibu, Appl. Phys. Lett. 91, 181903 (2007).
[34] Hyun-Jae Lee, K. Fujii, T. Goto, T. Yao, and Jiho Chang, Appl. Phys. Lett. 98, 071904, (2011).
[34] V. M. Bermudez, J. Appl. Phys. 80, 1190 (1996).
[35] A. T. Ping, Q. Chen, J. W. Yang, M. Asif Khan, I. Adesida Journal of Electronic Materials, vol. 27, no. 4, pp. 261-265, (1998).
[36] Chi-Sen Lee, Yow-Jon Lin, and Ching-Ting Lee, Appl. Phys. Lett. 79, 3815 (2001).
[37] Yasuo Nannichi, Jia-Fa Fan, Haruhiro Oigawa and Atsushi Koma, Jpn. J. Appl. Phys. pp. L2367-L2369, (1988).
[38] Yow-Jon Lin, Chang-Da Tsai, Yen-Tang Lyu, and Ching-Ting Lee, Appl. Phys. Lett. 77, 687 (2000).
[39] 郭馨貽,「Thin-GaN 發光二極體電極配置對光電特性影響之研究」,國立中央大學,碩士論文,民國九十八年。
[40] X. Guo and E. F. Schubert, J. Appl. Phys. 90, 4191 (2001).
[41] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller et al. Appl. Phys. Lett. 80, 4741 (2002).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code