Responsive image
博碩士論文 etd-0714113-180353 詳細資訊
Title page for etd-0714113-180353
論文名稱
Title
以常壓化學氣相沉積法於多晶銅箔與單晶銅(111)/藍寶石基板(001)上沉積多層石墨烯
Epitaxial Growth of Multi-layer Graphene over Polycrystalline Cu Foil and Single Crystalline Cu(111)/c-sapphire by Atmospheric Pressure Chemical Vapor Deposition
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
86
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-24
繳交日期
Date of Submission
2013-08-14
關鍵字
Keywords
常壓化學氣相沉積法、石墨烯、蕭特基接觸太陽能電池
Schottky junction solar cell, APCVD, Graphene
統計
Statistics
本論文已被瀏覽 5714 次,被下載 276
The thesis/dissertation has been browsed 5714 times, has been downloaded 276 times.
中文摘要
石墨烯是一種由碳原子以sp2混成軌域組成六角型呈蜂巢晶格的平面薄膜,只有一個碳原子厚度的二維材料,自從2004年英國曼徹斯特大學K. S. Novoselov 和 A. K. Geim發現後,它顯示了各種迷人的物理性質、化學性質,例如常溫量子霍爾效應、高電子遷移率、高透光率、低電阻…等。
在這次的報告中,首先探討了以多晶銅箔和單晶Cu(111)/c面藍寶石基板兩種不同基板,在一大氣壓氫氣環境下利用常壓化學氣相沉積法沉積石墨烯。為了得到更平整的銅表面去沉積石墨烯,將基板於一大氣壓氫氣環境、950 ℃下蝕刻和拋光銅表面。轉移方面,針對不同基板使用不同的轉移方式。單晶Cu(111)/c面藍寶石基板是藉由蝕刻掉單晶Cu(111)後直接轉移在c面藍寶石基板上。而多晶銅箔基板則是藉由蝕刻掉多晶銅箔基板再把石墨烯撈起。這兩種石墨烯轉移方法在轉移後都可以得到面積為公分平分的石墨烯。
以常壓化學氣相沉積法於多晶銅箔上沉積石墨烯並轉移到n型矽半導體上,做成石墨烯和n型矽半導體蕭特基接觸太陽能電池,在AM1.5G一個太陽下,開路電壓約為0.25 V、太陽能轉換效率約0.056 %。
最後,我們以常壓化學氣相沉積法直接於c面藍寶石基板上沉積石墨烯,並選用拉曼光譜來分析石墨烯層數,根據拉曼光譜2D峰與G峰的強度比、2D峰半高寬與2D峰對稱性,我們可以判斷所直接生長在c面藍寶石基板的石墨烯為雙層AA堆疊,所以我們成功在c面藍寶石基板上沉積出雙層AA堆疊的石墨烯。

關鍵詞:石墨烯、常壓化學氣相沉積法、蕭特基接觸太陽能電池
Abstract
Graphene is an allotrope of carbon which built from monolayer sp2-bonded carbon atoms as a honeycomb crystal lattice. Since graphene was reported in 2004 from University of Manchester K. S. Novoselov and A. K. Geim, it has been attracting increasing interest because of its unique physical properties, such as quantum Hall effect at room temperature, high mobility, high transmittance, low resistance and so on.
In this report, graphene is prepared with two different substrates, polycrystalline Cu foil and single crystalline Cu(111)/c-sapphire, in hydrogen atmosphere by APCVD. For obtaining the flat copper surface to grow graphene, copper sheets or templates are etched and polished in high temperature hydrogen atmosphere. For transfer graphene has different methods with regard to different substrates. Single crystalline Cu(111)/c-sapphire substrate, graphene can be directly transfer on c-sapphire as long as etch Cu(111). Polycrystalline Cu foil, graphene can be directly fish up as long as etch polycrystalline Cu foil. The graphene film area all can get 1 cm2 by using two graphene transfer methods.
We choose the epitaxial growth of graphene over polycrystalline Cu foil by APCVD and transfer graphene on n-type silicon semiconductor to fabricate very simple graphene and n-type silicon semiconductor Schottky junction solar cell, in AM1.5G one sun the Voc is about 0.25 V and energy conversion efficiency is about 0.056 %.
Final, We directly grow graphene on c-sapphire and choose the Raman spectrometer to estimate number of layers. According to Raman spectrometer, the 2D band and G band intensity ratio, 2D band FWHM and 2D band symmetry is all conform AA stacking bilayer graphene, so we successfully growth bilayer graphene on c-sapphire.
Keyword:Graphene, APCVD, Schottky junction solar cell
目次 Table of Contents
論文審定書
中文摘要
英文摘要
第 一 章 緒論 1
第 二 章 文獻回顧 3
2.1 石墨烯的結構與基本特性 3
2.2 石墨烯的製備方法 7
2.2.1 膠帶剝離法 8
2.2.2 微機械剝離法 9
2.2.3 碳化矽熱裂解法 10
2.2.4 化學氣相沉積法 11
2.3 不同石墨烯製備方法的比較 12
2.4 石墨烯的轉移方法 13
2.4.1 藉由聚甲基丙烯酸甲酯的轉移方法(Polymethylmethacrylate, PMMA) 13
2.4.2 藉由聚二甲基矽氧烷的轉移方法(Polydimethylsiloxane, PDMS) 14
2.5 石墨烯的拉曼光譜 15
2.6 檢驗石墨烯層數的方法 16
2.6.1 原子力顯微鏡判別石墨烯層數 16
2.6.2 吸收光譜判別石墨烯層數 17
2.6.3 光波的干涉效應判別石墨烯層數 17
2.6.4 拉曼光譜判別石墨烯層數 18
第 三 章 實驗儀器與原理介紹 19
3.1 製程儀器 19
3.1.1 高溫管狀爐系統(High Temperature Tube Furnace) 19
3.1.2 多靶式濺鍍機(Multi-Target Sputter) 20
3.1.3 雙電子槍蒸鍍機(Dual E-Beam Evaporator) 21
3.1.4 旋轉塗佈機(Spin Coating) 22
3.2 量測儀器 23
3.2.1 微拉曼光譜儀(Micro-Raman) 23
3.2.2 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 24
3.2.3 高解析度x射線繞射儀(High-resolution X-ray Diffraction, HR-XRD) 28
3.2.4 原子力顯微鏡(Atomic Force Microscope, AFM) 29
3.2.5 太陽能模擬器(Solar simulator) 30
第 四 章 實驗與結果討論 31
4.1 化學氣相沉積法 31
4.2 以常壓化學氣相沉積法於單晶銅(111)/c面藍寶石基板上沉積石墨烯 32
4.2.1 石墨烯/Cu(111)/c-sapphire直接轉移方法 38
4.2.2 不同的石墨烯生長時間 40
4.2.3 石墨烯的霍爾量測 44
4.3 以常壓化學氣相沉積法於多晶銅箔上沉積石墨烯 46
4.3.1 石墨烯/多晶銅箔的轉移方法 (PMMA) 50
4.3.2 石墨烯/多晶銅箔的轉移方法 (PDMS) 52
4.3.3 石墨烯/多晶銅箔的轉移方法 54
4.3.4 石墨烯/多晶銅箔轉移方法的比較 58
4.4 單晶銅(111)與多晶銅箔上沉積石墨烯的比較 59
4.5 石墨烯與n型矽半導體蕭特基接觸太陽能電池 60
4.6 以常壓化學氣相沉積法直接於c面藍寶石基板上沉積石墨烯 66
第 五 章 結論 71
參考文獻 72
附錄A 碩論樣品清單 76
參考文獻 References
[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “ Electric Field Effect in Atomically Thin Carbon Films ”, Science, 306, 666-669, 2004
[2] A. K. Geim, and K. S. Novoselov, “ The rise of graphene ”, Nature Materials, 6, 183-191, 2007
[3] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “ Two-dimensional gas of massless Dirac fermions in graphene ”, Nature, 438, 197-200, 2005
[4] Yu-Ming Lin, keith A. Jenkins, Alberto Valdes-Garcia, Joshua P. Small, Damon B. Farmer, and Phasedon Avouris, “ Operation of Graphene Transistors at Gigahertz Frequencies ”, Nano Lett, 9, 422-426, 2009
[5] Changgu Lee, Xiaoding Wei, Jeffrey W. Kysar, and James Hone, “ Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene ”, Science, 321, 385-388, 2008
[6] Peter Blake, Paul D. Brimicombe, Rahul R. Nair, Tim J. Booth, Da Jiang, Fred Schedin, Leonid A. Ponomarenko, Sergey V. Morozov, Helen F. Gleeson, Ernie W. Hill, Andre K. Geim, and Kostya S. Novoselov, “ Graphene-Based Liquid Crystal Device ”, Nano Lett, 8, 1704-1708, 2008
[7] Sasha Stankovich, Dmitriy A. Dikin, Geoffrey H. B. Dommett, Kevin M. Kohlhaas, Eric J. Zimney, Eric A. Stach, Richard D. Piner, SonBinh T. Nguyen, and Rodney S. Ruoff, “ Graphene-based composite materials ”, Nature, 442, 282-286, 2003
[8] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “ Fine Structure Constant Defines Visual Transparency of Graphene ”, Science, 320, 1308, 2008
[9] Keun Soo Kim, Yue Zhao, Houk Jang, Sang Yoon Lee, Jong Min Kim, Kwang S. Kim, Jong-Hyun Ahn, Philip Kim, Jae-Young Choi, and Byung Hee Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes”, Nature, 457, 706-710, 2009
[10] 林永昌, 呂俊頡, 鄭碩方, 邱博文, “石墨烯之電子能帶特性與其元件應用”, 物理雙月刊, 33卷, 2期, 191-202頁, 2011
[11] Mark Wilson, “Electrons in Atomically Thin Carbon Sheets Behave like Massless Particles”, Phys. Today, 59, 21-23, 2006
[12] Yuanbo Zhang, Joshua P. Small, William V. Pontius, and Philip Kim, “ Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices ”, Appl. Phys. Lett., 86, 073104, 2005
[13] Claire Berger, Zhimin Song, Xuebin Li, Xiaosong Wu, Nate Brown, Cecile Naud, Didier Mayou, Tianbo Li, Joanna Hass, Alexei N. Marchenkov, Edward H. Conrad, Phillip N. First, Walt A. de Heer, “ Electronic Confinement and Coherence in Patterned Epitaxial Graphene ”, Science, 312, 1191-1196, 2006
[14] Xuesong Li, Weiwei Cai, Jinho An, Seyoung Kim, Junghyo Nah, Dongxing Yang, Richard Piner, Aruna Velamakanni, Inhwa Jung, Emanuel Tutuc, Sanjay K. Banerjee, Luigi Colombo, Rodney S. Ruoff, “ Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils ”, Science, 324, 1312-1314, 2009
[15] Yoon-Young Choi, Seong JunKang, Han-Ki Kim, Won Mook Choi, Seok-In Na, “ Multilayer graphene films as transparent electrodes for organic photovoltaic devices ”, Solar Energy Materials & Solar Cells, 96, 281-285, 2012
[16] Changhyun Kim, Ju Yeon Woo, Jinwoong Choi, Junghee Park, and Chang-Soo Hana, “ Direct transfer of graphene without the removal of a metal substrate using a liquid polymer ”, Scripta Materialia, 66, 535–537, 2012
[17] Andrea C. Ferrari, John Robertson, “Raman Spectroscopy in Carbons: from Nanotubes to Diamond”, Royal Soc., 2004
[18] Jeong-Yuan Hwang, Chun-Chiang Kuo, Li-Chyong Chen and Kuei-Hsien Chen, “ Correlating defect density with carrier mobility in large-scaled graphene films: Raman spectral signatures for the estimation of defect density ”, Nanotechnology, 21, 465705, 2010
[19] Woosung Yang, Hyonkwang Choi, Suho Choi, Minhyon Jeon and Seung-Yop Lee, “Carbon nanotube–graphene composite for ionic polymer actuators”, Smart Mater. Struct., 21, 055012, 2012
[20] Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “ Graphene Thickness Determination Using Reflection and Contrast Spectroscopy ”, Nano Lett., 7, 2758-2763, 2007
[21] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “ Raman Spectrum of Graphene and Graphene Layers ”, PRL, 97, 187401, 2006
[22] Ying ying Wang, Zhen hua Ni, Ting Yu, Ze Xiang Shen, Hao min Wang, Yi hong Wu, Wei Chen, and Andrew Thye Shen Wee, “ Raman Studies of Monolayer Graphene: The Substrate Effect ”, J. Phys. Chem. C, 112, 10637–10640, 2008
[23] J. D. Plummer, M. D. Deal, and P. B. Griffin, “ Silicon VLSI technology fundamentals, practice and modeling ”, Pearson Education International, 2000
[24] Baoshan Hu, Hiroki Ago, Yoshito Ito, Kenji Kawahara, Masaharu Tsuji, Eisuke Magome, Kazushi Sumitani, Noriaki Mizuta, Ken-ichi Ikeda, and Seigi Mizuno, “ Epitaxial growth of large-area single-layer graphene over Cu(111)/sapphire by atmospheric pressure CVD ”, CARBON, 50, 57-65, 2012
[25] 彭鋐瑀, “ 以碳化矽熱裂解法與化學氣相沉積法製備石墨烯的製程與特性研究 ”, 2010年6月
[26] By Xinming Li, Hongwei Zhu, Kunlin Wang, Anyuan Cao, Jinquan Wei, Chunyan Li, Yi Jia, Zhen Li, Xiao Li, and Dehai Wu, “ Graphene-On-Silicon Schottky Junction Solar Cells ”, Adv. Mater., 22, 2743–2748, 2010
[27] M. Sze, “ 半導體元件物理與製作技術 ”, 國立交通大學出版社, 2010
[28] Hyun Jae Song, Minhyeok Son, Chibeom Park, Hyunseob Lim, Mark P. Levendorf, Adam W. Tsen, Jiwoong Parkb and Hee Cheul Choi, “ Large scale metal-free synthesis of graphene on sapphire and transfer-free device fabrication ”, Nanoscale, 4, 3050–3054, 2012
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code