Responsive image
博碩士論文 etd-0714114-104920 詳細資訊
Title page for etd-0714114-104920
論文名稱
Title
以分子動力學研究IC封裝中銅鋁間打線接合之介金屬化合物機械性質
Investigation of mechanical properties of Cu-Al intermetallic compound in the wire bonding process of IC packaging by molecular dynamics simulation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
94
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-18
繳交日期
Date of Submission
2014-08-15
關鍵字
Keywords
介金屬化合物、機械性質、分子動力學、打線接合、銅鋁
Molecular Dynamics, Cu-Al, Wire bonding, Intermetallic compound, Mechanical properties
統計
Statistics
本論文已被瀏覽 5665 次,被下載 1252
The thesis/dissertation has been browsed 5665 times, has been downloaded 1252 times.
中文摘要
打線接合技術已經非常成熟且可靠度較高,是最常被用來作為在IC封裝中之電路連接方式。以往金線是主要的打線接合材料,但金價的價格隨著市場變動,持續上揚,因此在成本的考量之下,打線接合的材料逐漸以銅線取代金線。
本文係利用分子動力學探討銅鋁間介金屬化合物之機械行為。首先,我們首先個別探討銅、鋁之機械性質,接著並針對介金屬化合物Cu9Al4、CuAl 與 CuAl2作分析,並按照IC打線接合系統中所生成銅鋁多層膜結構建立相對應之原子結構,並探討其械性質與破壞形式。從結果得知,在拉伸試驗與剪力試驗中,結構都會在介面(interface)處形成破壞,顯示介面之粘結強度對於IC封裝之打線接合的過程具有顯著的影響。最後,我們利用HA 指數(Honeycutt Andersen index)與區域應變分析銅鋁結構變化,進一步分析打線破壞情形與原子結構變化之關聯。
Abstract
In the IC packaging industry, due to the highly maturity and reliability of wire bonding technology, it has been the most widely used method for the circuit connections. In past years, gold wire was the major material for wire bonding. However, as the price of gold continually rise, copper wire has gradually been replaced with the gold wire for the consideration of cost down.
In this article, MD was used to study the mechanical behavior of intermetallic compounds of the Cu-Al. First, the mechanical properties of pure Cu and Al were discussed, as well as the intermetallic compound Cu9Al4, CuAl and CuAl2. In the following, Cu-Al multilayered film structures were created according to the experiment of IC wire bonding system and discussed on their structural and mechanical properties. From the results of the tensile and shear tests, the deformation will be observed at the interface, indicating that the wire bonding strength of IC package is significantly related to bonding strength of interface. Finally, the HA index and local strain distribution were used to analyze the relation between the deformation and the variation of Cu-Al atomic structure.
目次 Table of Contents
論文審定書 i
致謝 ii
中文摘要 iii
英文摘要 iv
目錄 v
圖次 vii
表次 x
第一章 序 論 1
1.1研究目的與動機 1
1.2文獻回顧 4
1.2.1打線接合之技術 4
1.2.2 介金屬化合物之特性 5
1.3論文架構 10
第二章 分子動力學理論基礎及方法 11
2.1 ADP勢能 12
2.2積分法則 12
2.3溫度修正 14
2.4時間步階選取 16
2.5原子級應力分析 17
2.6週期邊界的處理 20
2.7結構分析 21
2.7.1 HA 鍵型指數法 21
2.7.2 區域應變分析 22
2.8 銅鋁介金屬化合物模型 23
第三章 數值模擬方法 24
3.1鄰近原子表列數值方法 24
3.1.1截斷半徑法 25
3.1.2維理表列法 26
3.1.3巢室表列法 28
3.1.4維理表列結合巢室表列法 30
3.3 模擬流程 31
第四章 結果與討論 32
4.1模型建立及分析 32
4.1.1 試驗之物理模型建構 32
4.2 拉伸試驗 38
4.2.1 拉伸試驗之環境設定 38
4.2.2 IMC拉伸試驗之結果分析 39
4.2.3 打線接合之拉伸試驗之結果分析 49
4.3剪力試驗 55
4.3.1 剪力試驗之環境設定 55
4.2.2 IMC剪力試驗結果分析 56
4.2.3 打線接合之剪力試驗結果分析 66
第五章 結論與未來展望 72
5.1 結論 72
5.2 未來展望 73
參考文獻 74
參考文獻 References
[1] R. R. Tummala, Fundamentals of microsystems packaging. New York: McGraw-Hill, 2001.
[2] M. Braunovic and N. Alexandrov, "Intermetallic compounds at aluminum-to-copper electrical interfaces: effect of temperature and electric current," Components, Packaging, and Manufacturing Technology, Part A, IEEE Transactions on, vol. 17, pp. 78-85, 1994.
[3] G. G. Harman and G. G. Harman, Wire bonding in microelectronics : materials, processes, reliability, and yield, 2nd ed. New York: McGraw-Hill, 1997.
[4] M. Quirk and J. Serda, Semiconductor manufacturing technology. Upper Saddle River, NJ: Prentice Hall, 2001.
[5] S. Mori, H. Yoshida and N. Uchiyama, "The development of new copper ball bonding-wire," in Electronics Components Conference, Proceedings of the 38th, pp. 539-545, 1988.
[6] L. T. Nguyen, D. McDonald, A. R. Danker and P. Ng, "OPTIMIZATION OF COPPER WIRE BONDING ON AL-CU METALLIZATION," Ieee Transactions on Components Packaging and Manufacturing Technology Part A, vol. 18, pp. 423-429, Jun 1995.
[7] K. Toyozawa, K. Fujita, S. Minamide and T. Maeda, "DEVELOPMENT OF COPPER WIRE BONDING APPLICATION TECHNOLOGY," Ieee Transactions on Components Hybrids and Manufacturing Technology, vol. 13, pp. 667-672, Dec 1990.
[8] S. L. Khoury, D. J. Burkhard, D. P. Galloway and T. A. Scharr, "A COMPARISON OF COPPER AND GOLD WIRE BONDING ON INTEGRATED-CIRCUIT DEVICES," Ieee Transactions on Components Hybrids and Manufacturing Technology, vol. 13, pp. 673-681, Dec 1990.
[9] Y. F. Yao, T. Y. Lin and K. H. Chua, "Improving the deflection of wire bonds in stacked chip scale package (CSP)," Microelectronics Reliability, vol. 43, pp. 2039-2045, 2003.
[10] H. Xu, C. Liu, V. Silberschmidt and Z. Chen, "Growth of Intermetallic Compounds in Thermosonic Copper Wire Bonding on Aluminum Metallization," Journal of Electronic Materials, vol. 39, pp. 124-131, 2010.
[11] M. Drozdov, G. Gur, Z. Atzmon and W. D. Kaplan, "Detailed investigation of ultrasonic Al-Cu wire-bonds: II. Microstructural evolution during annealing," Journal of Materials Science, vol. 43, pp. 6038-6048, Oct 2008.
[12] H. Xu, C. Liu, V. V. Silberschmidt, S. S. Pramana, T. J. White, Z. Chen, et al., "A micromechanism study of thermosonic gold wire bonding on aluminum pad," Journal of Applied Physics, vol. 108, Dec 2010.
[13] H. Xu, C. Liu, V. V. Silberschmidt, S. S. Pramana, T. J. White, Z. Chen, et al., "Intermetallic phase transformations in Au–Al wire bonds," Intermetallics, vol. 19, pp. 1808-1816, 2011.
[14] J. DeLucca, J. Osenbach and F. Baiocchi, "Observations of IMC Formation for Au Wire Bonds to Al Pads," Journal of Electronic Materials, vol. 41, pp. 748-756, Apr 2012.
[15] C. J. Hang, C. Q. Wang, M. Mayer, Y. H. Tian, Y. Zhou and H. H. Wang, "Growth behavior of Cu/Al intermetallic compounds and cracks in copper ball bonds during isothermal aging," Microelectronics Reliability, vol. 48, pp. 416-424, 2008.
[16] S. Murali, N. Srikanth and C. J. Vath Iii, "Effect of wire size on the formation of intermetallics and Kirkendall voids on thermal aging of thermosonic wire bonds," Materials Letters, vol. 58, pp. 3096-3101, 2004.
[17] J. H. Westbrook and R. L. Fleischer, Basic mechanical properties and lattice defects of intermetallic compounds. Chichester,England ; New York: Wiley, 2000.
[18] C. J. Hang, C. Q. Wang, Y. H. Tian, M. Mayer, and Y. Zhou, "Microstructural study of copper free air balls in thermosonic wire bonding," Microelectronic Engineering, vol. 85, pp. 1815-1819, Aug 2008.
[19] H. Xu, C. Liu, V. V. Silberschmidt, S. S. Pramana, T. J. White, Z. Chen, et al., "Behavior of aluminum oxide, intermetallics and voids in Cu–Al wire bonds," Acta Materialia, vol. 59, pp. 5661-5673, 2011.
[20] A. Meetsma, J. L. De Boer and S. Van Smaalen, "Refinement of the crystal structure of tetragonal Al2Cu," Journal of Solid State Chemistry, vol. 83, pp. 370-372, 1989.
[21] E. H. Kisi and J. D. Browne, "Ordering and structural vacancies in non-stoichiometric Cu–Al γ brasses," Acta Crystallographica Section B, vol. 47, pp. 835-843, 1991.
[22] C. F. Yu, C. M. Chan, L. C. Chan and K. C. Hsieh, "Cu wire bond microstructure analysis and failure mechanism," Microelectronics Reliability, vol. 51, pp. 119-124, Jan 2011.
[23] M. Drozdov, G. Gur, Z. Atzmon and W. D. Kaplan, "Detailed investigation of ultrasonic Al-Cu wire-bonds: I. Intermetallic formation in the as-bonded state," Journal of Materials Science, vol. 43, pp. 6029-6037, Oct 2008.
[24] M. El-Boragy, R. Szepan and K. Schubert, "Kristallstruktur von Cu3Al2+ (h) und CuAl (r)," Journal of the Less Common Metals, vol. 29, pp. 133-140, 1972.
[25] R. Pelzer, M. Nelhiebel, R. Zink, S. Wöhlert, A. Lassnig and G. Khatibi, "High temperature storage reliability investigation of the Al–Cu wire bond interface," Microelectronics Reliability, vol. 52, pp. 1966-1970, 2012.
[26] W.-B. Lee, K.-S. Bang and S.-B. Jung, "Effects of intermetallic compound on the electrical and mechanical properties of friction welded Cu/Al bimetallic joints during annealing," Journal of Alloys and Compounds, vol. 390, pp. 212-219,2005.
[27] H. J. Kim, J. Y. Lee, K. W. Paik, K. W. Koh, J. H. Won, S. Y. Choe, et al., "Effects of Cu/Al intermetallic compound (IMC) on copper wire and aluminum pad bondability," Ieee Transactions on Components and Packaging Technologies, vol. 26, pp. 367-374, Jun 2003.
[28] J. H. Irving and J. G. Kirkwood, "The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics," The Journal of Chemical Physics, vol. 18, pp. 817-829, 1950.
[29] R. R. Zope and Y. Mishin, "Interatomic potentials for atomistic simulations of the Ti-Al system," Physical Review B, vol. 68, p. 024102, 2003.
[30] F. Apostol and Y. Mishin, "Interatomic potential for the Al-Cu system," Physical Review B, vol. 83, p. 054116, 2011.
[31] A. V. Yanilkin, V. S. Krasnikov, A. Y. Kuksin and A. E. Mayer, "Dynamics and kinetics of dislocations in Al and Al–Cu alloy under dynamic loading," International Journal of Plasticity, vol. 55, pp. 94-107, 2014.
[32] Y. Mishin, M. J. Mehl and D. A. Papaconstantopoulos, "Phase stability in the Fe–Ni system: Investigation by first-principles calculations and atomistic simulations," Acta Materialia, vol. 53, pp. 4029-4041, 2005.
[33] Y. Mishin and A. Y. Lozovoi, "Angular-dependent interatomic potential for tantalum," Acta Materialia, vol. 54, pp. 5013-5026, 2006.
[34] M. I. Baskes, J. S. Nelson and A. F. Wright, "Semiempirical modified embedded-atom potentials for silicon and germanium," Physical Review B, vol. 40, pp. 6085-6100, 1989.
[35] M. I. Baskes, "Application of the Embedded-Atom Method to Covalent Materials: A Semiempirical Potential for Silicon," Physical Review Letters, vol. 59, pp. 2666-2669, 1987.
[36] R. Pasianot, D. Farkas and E. J. Savino, "Empirical many-body interatomic potential for bcc transition metals," Physical Review B, vol. 43, pp. 6952-6961, 1991.
[37] S. N. a. C. S. N. Chandra, Physical Review B., vol. 69, p. 094101, 2004.
[38] M. H. N.Tokita, C.Azuma and T.Dotera, Journal of Chemical Physics, vol. 120, pp. 496-505, 2004.
[39] H. Sun, "COMPASS:  An ab Initio Force-Field Optimized for Condensed-Phase ApplicationsOverview with Details on Alkane and Benzene Compounds," The Journal of Physical Chemistry B, vol. 102, pp. 7338-7364, 1998.
[40] N. Chandra, S. Namilae and C. Shet, "Local elastic properties of carbon nanotubes in the presence of Stone-Wales defects," Physical Review B, vol. 69, p. 094101, 2004.
[41] N. Tokita, M. Hirabayashi, C. Azuma, and T. Dotera, "Voronoi space division of a polymer: Topological effects, free volume, and surface end segregation," The Journal of Chemical Physics, vol. 120, pp. 496-505, 2004.
[42] D. Srolovitz, K. Maeda, V. Vitek and T. Egami, "Structural defects in amorphous solids Statistical analysis of a computer model," Philosophical Magazine A, vol. 44, pp. 847-866, 1981.
[43] D. C. Rapaport, The art of molecular dynamics simulation, 2nd ed. Cambridge, UK ; New York, NY: Cambridge University Press, 2004.
[44] J. M. Haile, Molecular dynamics simulation : elementary methods. New York: Wiley, 1992.
[45] J. D. Honeycutt and H. C. Andersen, "MOLECULAR-DYNAMICS STUDY OF MELTING AND FREEZING OF SMALL LENNARD-JONES CLUSTERS," Journal of Physical Chemistry, vol. 91, pp. 4950-4963, Sep 1987.
[46] D. J. Eaglesham and M. Cerullo, "Dislocation-free Stranski-Krastanow growth of Ge on Si(100)," Physical Review Letters, vol. 64, pp. 1943-1946, 1990.
[47] T. Ozawa, "Kinetics of non-isothermal crystallization," Polymer, vol. 12, pp. 150-158, 1971.
[48] F. Shimizu, S. Ogata and J. Li, "Theory of shear banding in metallic glasses and molecular dynamics calculations," Materials Transactions, vol. 48, pp. 2923-2927, Nov 2007.
[49] D. Frenkel and B. Smit, Understanding molecular simulation : from algorithms to applications. San Diego: Academic Press, 1996.
[50] D. C. Rapaport, The art of molecular dynamics simulation. Cambridge ; New York: Cambridge University Press, 1995.
[51] R. A. Riggleman, H.-N. Lee, M. D. Ediger and J. J. de Pablo, "Free Volume and Finite-Size Effects in a Polymer Glass under Stress," Physical Review Letters, vol. 99, p. 215501, 2007.
[52] W. C. Overton and J. Gaffney, "Temperature Variation of the Elastic Constants of Cubic Elements. I. Copper," Physical Review, vol. 98, pp. 969-977, 1955.
[53] W. C. Oliver and G. M. Pharr, "An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments," Journal of Materials Research, vol. 7, pp. 1564-1583, 1992.
[54] Y. C. Waung, D. E. Beskos and W. Sachse, "Ultrasonic velocity measurement of elastic constants of Al-CuAl2 eutectic composite," Journal of Materials Science, vol. 10, pp. 109-112, 1975/01/01 1975.
[55] M. H. M. Kouters, G. H. M. Gubbels and O. Dos Santos Ferreira, "Characterization of intermetallic compounds in Cu–Al ball bonds: Mechanical properties, interface delamination and thermal conductivity," Microelectronics Reliability, vol. 53, pp. 1068-1075, 2013.
[56] V. P. Kobyakov and V. D. Zozulya, "Nonequilibrium mechanism of product formation during end burning of 3Cu—Al pressed powder samples," Combustion, Explosion and Shock Waves, vol. 42, pp. 559-567, 2006.
[57] F. Yuan and X. Wu, "Layer thickness dependent tensile deformation mechanisms in sub-10 nm multilayer nanowires," Journal of Applied Physics, vol. 111, pp. -, 2012.
[58] D. Roundy, C. R. Krenn, M. L. Cohen and J. W. Morris, "Ideal Shear Strengths of fcc Aluminum and Copper," Physical Review Letters, vol. 82, pp. 2713-2716, 03/29/ 1999.
[59] W. Zhou, L. Liu, B. Li, Q. Song and P. Wu, "Structural, Elastic and Electronic Properties of Al-Cu Intermetallics from First-Principles Calculations," Journal of Electronic Materials, vol. 38, pp. 356-364, 2009.
[60] R. Bennewitz, T. Gyalog, M. Guggisberg, M. Bammerlin, E. Meyer and H. J. Güntherodt, "Atomic-scale stick-slip processes on Cu(111)," Physical Review B, vol. 60, pp. R11301-R11304,1999.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code