Responsive image
博碩士論文 etd-0714115-164017 詳細資訊
Title page for etd-0714115-164017
論文名稱
Title
應用具pH及硫化氫控制特性之長效型膠體基質處理受含氯有機溶劑污染地下水
Application of a long-lasting colloidal substrate with pH and hydrogen sulfide control capabilities for TCE-contaminated groundwater remediation.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
146
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-27
繳交日期
Date of Submission
2015-08-14
關鍵字
Keywords
脫鹵球菌、長效釋碳乳化基質、三氯乙烯、土壤地下水污染、現地模場試驗、奈米零價鐵
Trichloroethylene, Dehalococcoides, A Field-scale Study, Nanoscale zero-valent iron, Long-lasting emulsified colloidal substrate, Groundwater contamination
統計
Statistics
本論文已被瀏覽 5703 次,被下載 0
The thesis/dissertation has been browsed 5703 times, has been downloaded 0 times.
中文摘要
土壤及地下水污染普遍存在之含氯有機物四氯乙烯(tetrachloroethylene, PCE)與三氯乙烯(trichloroethylene, TCE)屬於重質非水相液體(dense non-aqueous phase liquid, DNAPL),常沉積於地下含水層底部,使得整治上具有較高困難度。本研究利用可提升厭氧環境下生物分解能力之微量元素、乳化油基質(emulsified oil substrate, EOS)與可快速還原脫氯之奈米零價鐵(nanoscale zero-valent iron, nZVI),發展為長效釋碳乳化基質(long-lasting emulsified colloidal substrate, LECS),並以PCE及TCE做為目標污染物,期望本研究之LECS能穩定促進降解菌種生長,並能有效降解PCE及TCE。研究針對LECS進行基本性質分析,並以批次試驗評估生物降解能力,最後以變性梯度膠體電泳(denaturing gradient gel electrophoresis, DGGE)瞭解整體菌相與定序結果探討優勢菌種。LECS經光學顯微鏡觀測,結果顯示乳化油可將大部分nZVI包覆其中,測得油滴平均粒徑為0.705 μm。懸浮性試驗一週結果顯示,nZVI組總鐵懸浮率只剩2-3%,而LECS懸浮液測得總鐵量維持30-35%,顯示LECS內之nZVI能有效分散於水中,減緩團聚及沉降作用發生,延長與污染物接觸機會。微生態試驗結果顯示,各組別之降解效率以LECS組為最佳,在130天試驗中可穩定降解99%之高濃度TCE污染物,殘留濃度為0.046 mg/L,符合地下水污染管制標準(0.050 mg/L)。藉由菌相分析及菌種定序結果證實LECS可促使環境中可降解高氯數污染物之微生物生長,結果亦顯示LECS除有效降解污染物,也能刺激現地環境中脫氯菌生長。研究接續利用LECS進行現地模場試驗,模場為某濱海工業區地下水遭受含氯有機物(四氯乙烯、三氯乙烯)污染之場址,試驗接續微生態試驗結果進行評估,針對現地操作條件與監測項目擬定以LECS作為生物反應牆灌注藥劑,進行現地加強式生物復育法並討其處理成效。實場現地試驗結果顯示,第一次灌注LECS藥劑5公升與50公升推進水,兩週後側得總有機碳(TOC)為611 mg/L(背景濃度約為1.7-3.5 mg/L),且注藥井地下水環境呈現厭氧狀態,第八週後四氯乙烯由0.501 mg/L降解至0.015 mg/L,三氯乙烯由0.642 mg/L降解至0.028 mg/L,而注藥井下游TOC濃度並無明顯變化,顯示LECS藥劑量影響半徑小於兩公尺。當注藥井中TOC濃度降至背景濃度後進行第二次注藥試驗,為提高注藥井影響半徑,LECS藥劑增量為35公升與350公升推進水,研究測得注藥井下游2m及4m之監測井測得地下水中TOC濃度分別由1.7-3.1 mg/L提升至77.3及70.3mg/L,證實LECS藥劑於現地土壤地下水中有效傳輸,於下游2m及4m監測井中測得反應五週後之四氯乙烯分別由0.081及0.039 mg/L降解至0.018及0.009 mg/L,三氯乙烯由0.137及0.089 mg/L降解至0.022及0.014 mg/L。實場現地試驗結果顯示35公升LECS藥劑量與350公升推進水,可使藥劑傳輸至4 m以上。模場試驗結果證實LECS的長效性,並能向下游傳輸加強現地環境微生物整治牆作用範圍。研究亦針對試驗井環境中Dehalococcoides Subgroup嗜氯菌進行定性定量分析,結果顯示嗜氯菌背景濃度為3.84×10^3,顯示此場址確實適合進行生物整治。注藥三個月後,偵測監測井地下水之Dehalococcoides Subgroup菌數增加至1.73×10^6 gene copies/L。研究證實添加LECS能促進現地脫氯菌生長,並能加強現地厭氧還原脫氯效果。研究發展之LECS藥劑具有以下優點:(1)縮短整治時程;(2)解決傳統營養基質添加造成的酸化問題;(3)抑制硫化氫濃度,避免產生之異問題,增加環境友善性。在菌相分析方面,藉由DGGE菌相圖譜結果可知,添加EOS、nZVI和LECS對微生物並不會有抑制生長或減弱活性的情形發生,反而有益增加菌相豐富度,利於環境生物整治。由以上結果顯示,本研究之LECS具有穩定且緩釋之特性,可持續供應現地微生物生長之營養鹽及電子,強化還原脫氯反應,符合綠色整治之概念。
Abstract
Groundwater at many industrial sites is contaminated by chlorinated solvents that were released into the subsurface intentional or accidently. Among the chlorinated solvents, tetrachloroethylene (PCE) and trichloroethylene (TCE) [classified as the dense non-aqueous-phase liquid (DNAPL)] are the most commonly found groundwater pollutants because of its toxic properties and widespread occurrence in soil and groundwater worldwide. One cost-effective approach for the remediation of contaminated aquifers that is attracting increased attention is the application of biobarrier system for site cleanup and plume control. In this study, a long-lasting emulsified colloidal substrate (LECS) was developed for continuous carbon and nanoscale zero-valent iron (nZVI) release to remediate TCE-contaminated groundwater under reductive dechlorinating conditions. The produced LECS contained nZVI, mixed vegetable oils, two surfactants [Simple GreenTM (SG) and soya lecithin (SL)], and minerals. An emulsification study was performed to evaluate the globule droplet size and stability of LECS. Microcosm experiments and Field-scale study were conducted to evaluate the effectiveness of LECS on the enhancement of TCE and PCE dechlorination. Results show that a stable oil-in-water emulsion with uniformly small droplets (D10 = 0.7 μm) were produced, which could continuously supply primary substrates. The objective of this study were also to assess the potential of using the LECS to in situ bioremediate PCE/TCE-contaminated groundwater under reductive dechlorination processes. A field-scale study was operated at a PCE/TCE-contaminated site and 15-35 L of the LECS was pressure-injected into remediation wells located in the upgradient area of the plume to form a biologically active zone to enhance the PCE and TCE dechlorination. Results of microcosm experiments indicate that the emulsified solution could serve as the dispensing agent and nZVI particles (with diameter of 100 to 200 nm) could distribute in the emulsion evenly without precipitation and aggregation. Results from the microcosm experiments show that the LECS caused a rapid increase of the total organic carbon concentration (up to 460 mg/L), and reductive dechlorination of TCE was significantly enhanced. Up to 92% of TCE (with initial concentration of 2 mg/L) was removed after 130 days of operation. The pH was maintained around neutral due to the production of hydroxide ion after oxidation of nZVI, and thus, the reductive dechlorinating mechanism would not be prohibited due to the production of organic acids. Results also show that the iron sulfide was formed, and thus, the odor problem caused by the produced hydrogen sulfide during the anaerobic process can be solved. Results of field-scale study indicate that 15 L of the LECS caused a rapid increase of the total organic carbon concentration in the remediation well (up to 611 mg/L), and reductive dechlorination of PCE and TCE was significantly enhanced. Up to 99.9% and 95.2% of PCE and TCE (with initial concentration of 0.501 and 0.642 mg/L) was removed after 35 days of operation, and the downstream monitoring wells (2m) showed that the reductive dechlorination of PCE and TCE was significantly enhanced. Up to 35.8% and 37.5% of PCE and TCE (with initial concentration of 0.229 and 0.347 mg/L) was removed after 42 days of operation. Results of polymerase chain reaction (PCR), denaturing gradient gel electrophoresis (DGGE), and nucleotide sequence analyses reveal that some dechlorinating bacteria (including perchlorate-reducing bacterium, Geobacter spp., Geobacter lovleyi, Aquabacterium parvum strain, Iron-reducing bacterium, Methanogenic bacterium, Burkholderiales bacterium) might exist in the microcosm soils, and the field-scale study shown that the result of identification of bacteria, there were strains with dechlorination and chloride degradation such as Acidovorax sp., Azospira sp., Hydrogenophaga sp., Variovorax sp. They have the ability to degrade PCE and TCE. And quantitative analysis of reductive dechlorination bacteria levels of groundwater in the remediation wells are shown that the amount of Dehalococcoides spp. was from 3.84×10^3 up to 1.73×10^6 gene copies/L, so dechlorination cocci existed in underground environment of this site, which might contribute to the PCE and TCE dechlorination. Results indicate that the addition of LECS created anaerobic conditions and leads to a more stable, complete and thorough removal of PCE and TCE through biodegradation and chemical reduction mechanisms.
目次 Table of Contents
誌謝 i
中文摘要 iii
Abstract v
目錄 ix
表目錄 xii
圖目錄 xiii
第一章 前言 1
1.1 研究緣起 3
1.2 研究目標 6
第二章 文獻回顧 9
2.1 台灣土壤地下水污染現況 11
2.2 非水相液體(NAPL)污染物特性 14
2.2.1三氯乙烯與四氯乙烯 15
2.2.2含氯有機物地下水傳輸 18
2.3 土讓及地下水整治技術 19
2.3.1物理及化學整治技術 19
2.3.2生物復育技術 20
2.3.3現地生物整治技術(In situ bioremediation) 21
2.3.4三氯乙烯厭氧還原脫氯機制 22
2.4透水性反應牆(Permeable reactive barrier) 25
2.5乳化油基質(emulsified oil substrate, EOS) 30
2.6 奈米零價鐵(nanoscale zero-valent iron, nZVI) 32
2.6.1奈米零價鐵的定義與特性 32
2.6.2奈米金屬的製備 33
2.6.3奈米零價鐵的保存 34
2.6.4奈米零價鐵的應用 34
2.7界面活性劑 36
2.8分子生物技術於污染整治上的重要性與應用 38
2.9永續環境整治技術 40
第三章 研究與方法 43
3.1生物可利用長效釋碳乳化基質製備與研究 45
3.2 長效釋碳乳化基質製備程序 46
3.2.1奈米零價鐵之製備 46
3.2.2乳化油基質(EOS)之製備 48
3.2.3長效釋碳乳化基質(LECS)之製備 48
3.3批次實驗 48
3.4模場實驗 50
3.5實驗分析方法 51
3.5.1成分分析 51
3.5.2水質分析 51
3.5.3分子生物菌相分析 51
第四章 結果與討論 59
4.1 合成材料基本特性分析 61
4.1.1環境掃描式電子顯微鏡(E-SEM)影像 61
4.1.2 比表面積(specific surface area) 61
4.1.3光學顯微鏡影像(Photomicrograph) 62
4.1.4雷射動態光散射(DLS)粒徑分析儀 64
4.2製備材料穩定與懸浮性試驗 65
4.3微生物批次試驗 (microcosm study) 68
4.3.1現地微生物降解三氯乙烯 69
4.3.2 添加乳化油與長效型膠體基質降解三氯乙烯 71
4.3.3基本水質參數分析 73
4.3.4三氯乙烯降解副產物 77
4.3.5硫酸鹽還原菌與異味控制 81
4.3.6微生態批次試驗小結與成果 85
4.4微生物監測與菌相分析 88
4.4.1批次反應瓶菌相分析 90
4.4.2微生物定序結果 92
4.5模場試驗(field scale study) 95
4.5.1現地地下水基本水質與微生物分析 96
4.5.2現地LECS灌注試驗基本水質分析 96
4.5.3現地LECS傳輸與污染物降解成效 98
4.5.4試驗模場降解副產物濃度變化 100
4.5.5高劑量LECS藥劑傳輸試驗(第二次注藥) 102
4.5.6 高劑量LECS藥劑傳輸試驗(第三次注藥) 103
4.5.7模場菌相與定序分析 104
第五章 結論與建議 107
5.1結論 109
5.2建議 111
參考文獻 113
參考文獻 References
Alma, S., Enright, A.M., O’Flaherty V. (2011) “Temperature dependent (37-15°C) anaerobic digestion of a trichloroethylene-contaminated wastewater”, Bioresource Technology, 102(17), pp.7645-7656.
Aulenta, F., Fuoco, M., Canosa, A., Papini, M.P., Majone, M. (2008) Use of poly-beta-hydroxy-butyrate as a slow-release electron donor for the microbial reductive dechlorination of TCE. Water Science Technology 57, 921-925.
Aulenta, F., Fuoco, M., Canosa, A., Papini, M.P., Majone, M., (2008) “Use of poly-beta-hydroxy-butyrate as a slow-release electron donor for the microbial reductive dechlorination of TCE”, Water Science and Technology, 57(6), pp.921-925.
Azizian, M.F., Marshall, I.P.G., Behrens, S., Spormann, A.M., Semprini, L. (2010) “Comparison of lactate, formate, and propionate as hydrogen donors for the reductive dehalogenation of trichloroethene in a continuous-flow column”, Journal of Contaminant Hydrology, 113(1-4), pp.77-92.
Baek, W., Lee, J.Y. (2011) “Source apportionment of trichloroethylene in groundwater of the industrial complex in Wonju, Korea: a 15-year dispute and perspective”, Water and Environment Journal, 25(3), pp.336-344.
Baek, W., Lee, J.Y. (2011) “Source apportionment of trichloroethylene in groundwater of the industrial complex in Wonju, Korea: a 15-year dispute and perspective”, Water and Environment Journal, 25(3), pp.336-344,.
Basu, N.B., Rao, P.S.C., Falta, R.W., Annable, M.D., Jawitz, J.W., Hatfield, K. (2008) “Temporal evolution of DNAPL source and contaminant flux distribution: Impacts of source mass depletion. Journal of Contaminant Hydrology”, 95(3-4), pp.93-109.
Basu, N.B., Rao, P.S.C., Falta, R.W., Annable, M.D., Jawitz, J.W. and Hatfield, K. (2008) Temporal evolution of DNAPL source and contaminant flux distribution: Impacts of source mass depletion. Journal of Contaminant Hydrology, 95(3-4), 93-109.
Boni, M.R., Sbaffoni, S. (2009) “The potential of compost-based biobarriers for Cr(VI) removal from contaminated groundwater: column test”, Journal of hazardous materials, 166(2-3), pp.1087-95.
Boni, M.R., Sbaffoni, S. (2009) “The potential of compost-based biobarriers for Cr(VI) removal from contaminated groundwater: column test”, Journal of hazardous materials, 166(2-3), pp.1087-95.
Borden,R. C., and C. M. Kao.,1992, "Evaluation of Groundwater Extraction for Remediation of Petroleum Contaminated Aquifers," Water Environment Research, 64, No. 1.
Cantrell, K.J., Yabusaki, S.B., Engelhard, M.H., Mitroshkov, A.V., Thornton, E.C. (2003) “Oxidation of H2S by iron oxides in unsaturated conditions. Environmental Science & Technology, 37, pp.2192-2199.
Chambers, J.E., Wilkinson, P.B., Wealthall, G.P., Loke, M.H., Dearden, R., Wilson, R., Allen, D., Ogilvy, R.D., (2010) “Hydrogeophysical imaging of deposit heterogeneity and groundwater chemistry changes during DNAPL source zone bioremediation”, Journal of Contaminant Hydrology. 118(1-2), pp.43-61.
Chen Ming-Jun, Kun-nan Hsu, Chi-Chi Lin, Hsing-Lung Lien,(2012) Environmental Application of Sulfide Removal Using Nanoscale Zero-Valent Iron (nZVI) and nZVI Modified Activated Carbon.(研討會論文)
Chen, K.F., Kao, C.M., Sung, W.P., Lin, C.C., Yeh T.Y. (2011) “Enhanced In-Situ Anaerobic Bioremediation of TCE-Contaminated Groundwater Using Nanoscale Zero-Valent Iron (nZVI)”, Materials Science Forum, 694, pp.3-7.
Chomsurin, C., Kajorntraidej, J., Luangmuang, K. (2008) “Bioremediation of trichloroethylene contaminated groundwater using anaerobic process”, Water Science and Technology, 58(11), pp.2127-2132.
Chu, W., Kwan, C.Y. (2003) Remediation of contaminated soil by a solvent/surfactant system. Chemosphere 53, 9-15.
Chun, C. L., Lee, J.-J. and Park, J. W. (2002) Solubilization of PAH mixtures by three different anionic surfactants. Environmental Pollution 118 , 307-313.
Cobas, M., Ferreira, L., Tavares, T., Sanroman, M.A., Pazos, M. (2013) Development of permeable reactive biobarrier for the removal of PAHs by Trichoderma longibrachiatum. Chemosphere 91, 711-716.
Cohen, R. M., and Mercer, J. W., DNAPL Site Evaluation, C.K. Smoley-CRC Press, Boca Raton, Fla., 1993.
Cook, S.M. (2009) “Assessing the Use and Application of Zero-Valent Iron Nanoparticle Technology for Remediation at Contaminated Sites”, Washington. D.C., USEPA.
Coulibaly, K. M., Long, C. M., Borden, R. C. (2006) Transport of edible oil emulsions in clayey sands: One-dimensional column results and model development, Journal of Hydrologic Engineering 11, 230-237.
Do, L.D., Withayyapayanon, A., Harwell, J.H., Sabatini, D.A. (2009) Environmentally friendly vegetable oil microemulsions using extended surfactants and linkers. Journal of Surfactant Detergent 12, 91-99.
Dwarakanath, V., Jackson, R. E., and Pope, G. A., Influence of Wettability on the Recovery of NAPLs from Alluvium, Environ. Sci. Technol, Vol. 36, No. 2, 2002.
Fuller, M.E., Schaefer, C.E., Steffan, R.J. (2009) “ Evaluation of a peat moss plus soybean oil (PMSO) technology for reducing explosive residue transport to groundwater at military training ranges under field conditions”, Chemosphere 77(8), pp.1076-1083.
Glover, K., Munakata-Marr, J., Illangasekare, T.H. (2007) “Biologically-enhanced mass transfer of tetrachloroethene from DNAPL in source zones: experimental evaluation and influence of pool morphology”, Environmental Science and Technology, 41(4), pp.1384-1389.
Glover, K., Munakata-Marr, J., Illangasekare, T.H. (2007) Biologically-enhanced mass transfer of tetrachloroethene from DNAPL in source zones: experimental evaluation and influence of pool morphology. Environmental Science and Technology 41 (4), 1384-1389.
Green Cleanup Standard Initiative , U.S. EPA’s Office of Solid Waste and Emergency Response (OSWER), July 2010 Update.
Green Remediation Best Management Practices: Bioremediation, Office of Solid Waste and Emergency Response of U.S. Environmental Protection Agency, EPA 542-F-10-006, March 2010.
Green Remediation Best Management Practices: Clean Fuel & Emission Technologies for Site Cleanup, Office of Solid Waste and Emergency Response of U.S. Environmental Protection Agency, EPA 542-F-10-008, August 2010.
Green Remediation Best Management Practices: Fact Sheets on Specific Remedies and Other Key Issues, Office of Superfund Remediation and Technology Innovation of U.S. Environmental Protection Agency, September 2010 Update.
Green Remediation Best Management Practices: Soil Vapor Extraction & Air Sparging, Office of Solid Waste and Emergency Response of U.S. Environmental Protection Agency, EPA 542-F-10-007, March 2010.
Guerrero-Barajas, C., García-Peña, E.I. (2010) “Evaluation of enrichments of sulfate reducing bacteria from pristine hydrothermal vents sediments as potential inoculum for reducing trichloroethylene (TCE)”, World Journal of Microbiology and Biotechnology, 26(1), pp.21-28.
Ha, C., Kim, N., Park, H., Kwon, S.Y., Lee, H.S., Hong, U.J., Park, S., Kim, S., Kim, Y. (2010) “Natural gradient drift tests for assessing the feasibility of in situ aerobic cometabolism of trichloroethylene and evaluating the microbial community change”, Water Air Soil Poll, 17, pp.35-42.
He, Y.T., Wilson, J.T., Wilkin, R.T. (2010) “Impact of iron sulfide transformation on trichloroethylene degradation”, Geochimica et Cosmochimica Acta, 74(7), pp.2025-2039.
Hernández-Espriú, A., Sánchez-León, E., Martínez-Santos, P, Torres, L. G. (2013) Remediation of a diesel-contaminated soil from a pipeline accidental spill: enhanced biodegradation and soil washing processes using natural gums and surfactants. Journal of Soils and Sediments, 13, 152-165.
Holmer M. and Hasler-Sheetal H. (2014) Sulfide intrusion in seagrasses assessed by stable sulfur isotopes—a synthesis of current results
Huang, D. Y. and Becker, J. G. (2009) Determination of intrinsic monod kinetic parameters for two heterotrophic tetrachloroethene (PCE)-respiring strains and insight into their application. Biotechnology and bioengineering, 104, 301-311.
Hunter, W.J., Shaner, D.L. (2010) “Biological Remediation of Groundwater Containing both Nitrate and Atrazine”, Current Microbiology, 60, pp.42-46.
Hunter, W.J., Shaner, D.L. (2010) “Biological Remediation of Groundwater Containing both Nitrate and Atrazine”, Current Microbiology, 60, pp.42-46.
Hunter, W.J., Shaner, D.L. (2011) “Studies on removing sulfachloropyridazine from groundwater with microbial bioreactors”, Current Microbiology, 62(2), pp.1560-1564.
ITRC. 2011. Adobe PDF Logo Permeable Reactive Barrier: Technology Update. 234 pp.
Ivan Rusyn, Weihsueh A. Chiu, Lawrence H. Lash, Hans Kromhout, Johnni Hansen, Kathryn Z. Guyton. (2014) Trichloroethylene: Mechanistic, epidemiologic and other supporting evidence of carcinogenic hazard. Pharmacology & Therapeutics, Volume 141, Issue 1, January 2014, Pages 55-68.
Jafvert, C.T. (1996) Surfactants/Cosolvent. Ground-water Remediation Technologies Analysis Center, Technology Evaluation Report, TE-96-02.
Johnson, J.C., Sun, S., Jaffe, P.R. (1999) Surfactant enhanced perchloroethylene dissolution in porous media: The effect on mass transfer rate coefficients. Environ. Sci. Technol. 35, 1286-1292.
Juhasz, A., Smith, E., Smith, J., and Naidu, R. (2003) Remediation of persistent organic pollutants using a novel two-phase soil washing biosorption process. Water, Air, and Soil Pollution: Focus, 3, 233-242.
Kao, C.M., Huang, K.D., Wang, J.Y., Chen, T.Y., Chien, H.Y. (2008) “Application of potassium permanganate as an oxidant for in situ oxidation of trichloroethylene-contaminated groundwater: A laboratory and kinetics study.” Journal of Hazardous Materials”, 153(3), pp.919-927.
Kao, C.M., Huang, K.D., Wang, J.Y., Chen, T.Y., Chien, H.Y. (2008) “Application of potassium permanganate as an oxidant for in situ oxidation of trichloroethylene-contaminated groundwater: A laboratory and kinetics study.” Journal of Hazardous Materials, 153(3), pp.919-927.
Khalladi,R.,Benhabiles,O.,Bentahara,F.,Moulai-Motefa,N.(2009)Surfactantremediationofdieselfuelpollutedsoil.J.HazardousMaterials.164, 1179-1184.
Kim, S.-J., Choi, D.H., Sim, D.S., and Oh, Y.-S. (2005) Evaluation of bioremediation effectiveness on crude oil-contaminated sand. Chemosphere , 59 , 845-852.
Kimura, M., Futamata, M., Mukai, R., & Tamaru, Y. (2005). Pd-catalyzed C3-selective allylation of indoles with allyl alcohols promoted by triethylborane. Journal of the American Chemical Society 127, 4592-4593.
Kuo, Y.C., Liang, S.H., Wang, S.Y., Chen, S.H. and Kao, C.M. (2013) Application of Emulsified Substrate Biobarrier to Remediate TCE-Contaminated Groundwater: Pilot-Scale Study, Journal of Hazardous, Toxic, and Radioactive Waste.
Lai, C., Huanga, Y., Wei, Y., Chang, J. (2009) Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil. J. Hazard. Mater. 167, 609-614
Lenczewski, M., Jardine, P., McKay, L., & Layton, A. (2003). Natural attenuation of trichloroethylene in fractured shale bedrock. Journal of contaminant hydrology 64, 151-168.
Li, Y., Liu, F., Chen, H.H., Shi, J.H., Wang, Y.F. (2008) “Anaerobic biodegradation of tetrachloroethylene with acetic acid as cometabolism substrate under anaerobic condition”, Acta Geologica Sinica-English Edition, 82(4), pp.911-916.
Liang, S.H., Kao, C.M., Kuo, Y.C., Chen, K.F. (2011) Application of persulfate-releasing barrier to remediate MTBE and benzene contaminated groundwater. J Hazard Mater 185, 1162-1168.
Liang, S.H., Kuo, Y.C., Chen, S.H., Chen, C.Y., Kao, C.M. (2013) “Development of a slow polycolloid-releasing substrate (SPRS) biobarrier to remediate TCE-contaminated aquifers”, Journal of Hazardous Materials, 254-255(15), pp.107-115.
Liang, S.H., Kuo, Y.C., Chen, S.H., Chen, C.Y., Kao, C.M. (2013) “Development of a slow polycolloid-releasing substrate (SPRS) biobarrier to remediate TCE-contaminated aquifers”, Journal of Hazardous Materials, 254-255(15), pp.107-115.
Lien, H.L., Zhang, W.X. (2001) Nanoscale iron particles for complete reduction of chlorinated ethenes. Colloid Surface 191, 97-105.
Loon, G.W., Duffy, S.J. (2005) “Environmental Chemistry: a Global Perspective, second ed.”, Oxford University Press.
Maier, R.M., Pepper, I.L., Gerba, C.P. (2009) Environmental Microbiology, 2nd edition, Academic Press, San Diego, CA.
Mamie, N.I., Kate, M.S., Dennis, E.R. (2005) Reduction of Perchlorate and Nitrate by Microbial Communities in Vadose Soil. Application Environmental Microbiology 7, 3928-3934.
Mattes, T. E., Alexander, A. K., Coleman, N. V. (2010) Aerobic biodegradation of the chloroethenes: pathways, enzymes, ecology, and evolution, FEMS Microbiology Reviews 34, 445-475.
Mattes, T. E., Alexander, A. K., Coleman, N. V. (2010) Aerobic biodegradation of the chloroethenes: pathways, enzymes, ecology, and evolution. FEMS Microbiol reviews 34, 445-475.
Miller, T. R., Franklin, M. P., Halden, R. U. (2007) Bacterial community analysis of shallow groundwater undergoing sequential anaerobic and aerobic chloroethene biotransformation. FEMS microbiology ecology 60, 299-311.
Moscoso, F., Teijiz, I., Deive, F.J., Sanroman, M.A. (2012) Efficient PAHs biodegradation by a bacterial consortium at flask and bioreactor scale. Bioresour Technol 119, 270-276.
Nakatsu, T., Ichiyama, S., Hiratake, J., Saldanha, A., Kobashi, N., Sakata, K., & Kato, H. (2006). Structural basis for the spectral difference in luciferase bioluminescence. Nature 440, 372-376.
Ozturk, Z., Katsenovich, Y., Tansel, B., Laha, S., Moos, L., Allen, M. (2009) “Enhancement of TCE attenuation in soils by natural amendments”, Soil and Sediment Contamination, 18(1), pp.1-13.
Pankow, J. F., and Cherry, J. A., Eds., Dense Chlorinated Solvents and Other DNAPLs in Ground Water, Waterloo Press, Portland, Ore., 1996.
Peu, P., Picard, S., Diara, A., Girault, R., Béline, F., Bridoux, G., Dabert, P. (2012) “Prediction of hydrogen sulphide production during anaerobic digestion of organic substrates”, Bioresource Technology, 121, pp.419-424.
Pfeiffer, P., Bielefeldt, A.R., Illangasekare, T., Henry, B. (2005) Partitioning of dissolved chlorinated ethenes into vegetable oil. Water Research 39, 4521-4527.
Plaza, G., Nalecz-Jawecki, G., Ulfig, K., and Brigmon, R. L. (2005) The application of bioassays as indicators of petroleum-contaminated soil remediation. Chemosphere 59 (2), 289-296.
Plumb, R.H., The importance of volatile organic compounds as a disposal site monitoring parameter. In:Lesage, S., Jackson, R.E. (Eds)., Groundwater Contamination and Analysis at Hazardous Waste Sites. Marcel Dekker, pp. 173-197, 1992.
Quinn, J. (2005) Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environmental Science and Technology 39, 1309-1318.
Ras, N.V., Volkers, B. (2010) “In-situ stimulated biological degradation: a natural solution”, Netherlands Centre for Soil Quality Management and Knowledge Transfer.
Rusyn, I., Chiu, W.A., Lash, L.H., Kromhout, H., Hansen, J., Guyton, K.Z. (2014) “Trichloroethylene: Mechanistic, epidemiologic and other supporting evidence of carcinogenic hazard. Pharmacology & Therapeutics”, 141(1), pp.55-68.
Semkiw, E.S., Barcelona, M.J. (2011) “Field Study of Enhanced TCE Reductive Dechlorination by a Full-Scale Whey PRB”, Groundwater and Hydrogeology, 31(1), pp.68-78.
Su, C., Puls, R.W., Krug, T.A., Watling, M.T., O’Hara, S.K., Quinn, J.W., Ruiz, N.E. (2013) A two and half-year-performance evaluation of a field test on treatment of source zone tetrachloroethene and its chlorinated daughter products using emulsified zero valent iron nanoparticles. water research 46, 5071-5084.
Su, C., Puls, R.W., Krug, T.A., Watling, M.T., O’Hara, S.K., Quinn, J.W., Ruiz, N.E. (2013) Travel distance and transformation of injected emulsified zerovalent iron nanoparticles in the subsurface during two and half years. Water research 12, .4095-4106.
Sung, Y., Fletcher, K.F., Ritalaliti, K.M., Apkarian, R.P., Ramos-Hernandez, N., Sanford, R.A., Mesbah, N.M., Loffler, F.E. (2006) Geobacter lovleyi sp nov strain SZ, a novel metal-reducing and tetrachloroethene-dechlorinating bacterium, Application Environmental Microbiology 72, 2775-2782.
Superfund Green Remediation Strategy, Office of Solid Waste and Emergency Response & Office of Superfund Remediation and Technology Innovation of U.S. Environmental Protection Agency, September 2010.
Talley, J.W., ASCE, M., Zhang, X., Waisner, S., Ringelberg, D., and Hansen, L. (2005) Study of the potential for bioremediation of petroleum hydrocarbons within Smear zone soils. Journal of Environmental Engineering. November , 1401-1406.
Teerakun, M., Reungsang, A., Lin, C.J., Liao, C.H. (2011) “Coupling of zero valent iron and biobarriers for remediation of trichloroethylene in groundwater”, Journal of Environmental Sciences, 23(4), pp.560-567.
Teerakun, M., Reungsang, A., Lin, C.J., Liao, C.H. (2011) “Coupling of zero valent iron and biobarriers for remediation of trichloroethylene in groundwater”, Journal of Environmental Sciences, 23(4), pp.560-567.
Thiruverikatachari, R., Vigneswaran, S., Naidu, R. (2008) Permeable reactive barrier for groundwater remediation. J Ind Eng Chem 14, 145-156.
Tristram Chivers and Philip J. W. (2013) Ubiquitous trisulfur radical anion: fundamentals and applications in materials science, electrochemistry, analytical chemistry and geochemistry, Chem. Soc. Rev., 42, 5996-6005.
Tsai, T.T., Liu, J.K., Chang, Y.M., Chen, K.F., Kao, C.M. (2014) “Application of polycolloid-releasing substrate to remediate trichloroethylene-contaminated groundwater: A pilot-scale study”, Journal of Hazardous Materials, 268, pp.92-101.
Wang D. Y., Ming Gong, Hung-Lung Chou, Chun-Jern Pan, Hsin-An Chen, Yingpeng Wu, Meng-Chang Lin, Mingyun Guan, Jiang Yang, Chun-Wei Chen, Yuh-Lin Wang, Bing-Joe Hwang, Chia-Chun Chen, and Hongjie Dai. (2015) Highly Active and Stable Hybrid Catalyst of Cobalt-Doped FeS2 Nanosheets–Carbon Nanotubes for Hydrogen Evolution Reaction. J. Am. Chem. Soc., 137 (4), 1587-92.
Wei, J., Qian, Y., Liu, W., Wang, L., Ge, Y., Zhang, J., Yu, J., Ma, X. (2014) “Effects of particle composition and environmental parameters on catalytic hydrodechlorination of trichloroethylene by nanoscale bimetallic Ni-Fe”, Journal of Environmental Sciences, 26(5), pp.1162-1170.
Wei, J., Qian, Y., Liu, W., Wang, L., Ge, Y., Zhang, J., Yu, J., Ma, X. (2014) “Effects of particle composition and environmental parameters on catalytic hydrodechlorination of trichloroethylene by nanoscale bimetallic Ni-Fe”, Journal of Environmental Sciences, 26(5), pp.1162-1170.
Wilkin, R.T., Acree, S.D., Ross, R.R., Puls, R.W., Lee, T.R., Woods, L.L. (2014) “Fifteen-year assessment of a permeable reactive barrier for treatment of chromate and trichloroethylene in groundwater”, Science of The Total Environment, 468-469(15), pp.186-194.
Xueyuan, Y., Christopher, A., Marc, A., Deshusses, Mark, R., Matsumoto. (2007) Perchlorate Reduction by Autotrophic Bacteria Attached to Zerovalent Iron in a Flow-Through Reactor. Environmental Science and Technology 41, 990-997.
Yan, W., Herzing, A.A., Kiely, C.J., Zhang, W.X. (2010) “Nanoscale zero-valent iron (nZVI): Aspects of the core-shell structure and reactions with inorganic species in water”, Journal of Contaminant Hydrology, 118, pp.96-104.
Yan, W., Herzing, A.A., Kiely, C.J., Zhang, W.X. (2010) Nanocale zero-valent iron (nZVI): Aspects of the core-shell structure and reactions with inorganic species in water. Journal of Contaminant Hydrology 118, 96-104.
Zhang, W. (2003) Nanoscale iron particles for environmental remediation: an overview. Journal of Nanopartical Research 5, 323.
Zhang, W. X., Li, X. Q., Brown, D. G. (2007) Stabilizationofbiosolidswithnanoscale zero-valentiron (nZVI), J.Nanopart.Res.9233-243.
Zhou, W. and Zhu, L (2005) Distribution of polycyclic aromatic hydrocarbons in soil-water system containing a nonionic surfactant. Chemosphere. 60 , 1237-1245.
王有盛,2003,促進厭氧生物處理四氯乙烯代謝方式之探討,國立中興大學環境工程研究所碩士論文。
吳靜芷,2015(網頁更新),行政院農委會家畜衛生試驗所,硫化氫中毒疾病診斷輔助報告。
林財富,2008,土壤與地下水污染整治:原理與應用,中華民國環境工程學會。
林靜齡,2010,乳化奈米零價鐵於地下水之傳輸性評估,國立中興大學環境工程學系碩士論文。
洪詩怡,2011,飽和含水層中四氯乙烯厭氧分解之菌相分佈研究:管柱試驗,中興大學環境工程學系所碩士論文。
涂秀娟,2007,奈米級零價鐵懸浮液之應用性探討:不同環境氣氛下對於水溶液中TCE之降解反應途徑與成效、在土體中之傳輸現象及對菌落數之影響,國立中山大學環境工程研究所碩士論文。
張永宜,2007,乳化奈米級零價鐵處理水溶液中之三氯乙烯,國立中山大學環境工程研究所碩士論文。
連興隆、林啟琪、陳明君、許坤楠、蘇蓮香,2012,利用奈米鐵複合活性碳技術進行硫氫去除之研究,研討會論文。
陳逸明,2010,以乳化型基質處理受三氯乙烯污染之地下水,國立中山大學環境工程研究所碩士論文。
楊金鐘,2007,綠色奈米技術之開發及應用:環境友善性奈米級零價鐵模擬現地整治土壤/地下水污染技術開發及應用,行政院環境保護署計畫成果。
楊嘉葦,2011,奈米零價鐵去除養豬廢水中硫化氫之研究,國立高雄大學土木與環境工程學系碩士論文。
劉嘉庭,2011,利用乳化型釋碳基質提昇三氯乙烯污染地水之生物降解效率:現地模場試驗,國立中山大學環境工程研究所碩士論文。
簡華逸,2010,應用現地生物整治技術去除三氯乙烯污染之地下水,國立中山大學環境工程研究所博士論文。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.144.86.138
論文開放下載的時間是 校外不公開

Your IP address is 3.144.86.138
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code