Responsive image
博碩士論文 etd-0714117-105327 詳細資訊
Title page for etd-0714117-105327
論文名稱
Title
使用慣性感測器之智慧型手機Wi-Fi定位系統
Smartphone-Based Wi-Fi Positioning System Using Inertial Sensors
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
60
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-10
繳交日期
Date of Submission
2017-08-14
關鍵字
Keywords
Wi-Fi、智慧型手機、定位系統、慣性感測器、室內定位
positioning system, indoor positioning, inertial sensors, smartphone, Wi-Fi
統計
Statistics
本論文已被瀏覽 5706 次,被下載 60
The thesis/dissertation has been browsed 5706 times, has been downloaded 60 times.
中文摘要
近幾年,隨著智慧型行動裝置越來越普及,行動定位服務漸漸被大量使用在許多應用中。因為Wi-Fi的普及且不需要額外的硬體成本,使得如何利用Wi-Fi來幫助室內定位成為熱門的研究重點。雖然在received signal strength (RSS) fingerprint-based室內定位方面,已經有許多相關研究正在進行,但目前大多數的系統仍很難克服費時費力的離線訓練階段。為了改善此問題,Bahl等人[1]提出了model-based室內定位系統,利用無線訊號傳播模型來建立理論型的radio map。雖然它的精確度比其他系統低,但所需要的佈署成本卻相當低。
現在的智慧型手機整合了多種慣性感測器,例如加速度計、磁力計、陀螺儀...等,在本論文中我們利用它們來偵測使用者的移動狀態,實作出一個室內定位系統。此系統以Bahl的model-based系統為原型,並使用兩個機制來改善其精確度。第一,它使用智慧型手機上的慣性感測器來追蹤使用者的行走路徑,以幫助定位。第二,所收集到的資料將用來更新radio map以改善其準確度。
我們在Android智慧型手機上實作此系統,並評估其表現。實驗結果顯示本文的系統比原本的model-based定位系統有更好的精確度。
Abstract
In recent years, mobile positioning services are increasingly used for many applications with the growing popularity of smart mobile devices. Wi-Fi indoor positioning has become a research focus due to the popularity of Wi-Fi and no-additional hardware cost. Although active researches have been conducted on received signal strength (RSS) fingerprint-based indoor position, most of the current systems hardly overcome the costly and time-consuming offline training phase. For improving this problem, Bahl et al. [1] proposed a model-based indoor positioning system, which constructed a theoretically-computed radio map by using the radio propagation model. Although the accuracy is lower than other systems, less overhead to deploy is its advantage.
On the other hand, smartphones integrate various kinds of inertial sensors such as accelerometer, magnetometer, gyroscope, etc. In this thesis, we utilize them to detect user movements and implement an indoor positioning system. This system is based on the prototype of Bahl’s model-based system and uses two mechanisms to improve its accuracy. Firstly, it tracks user's walk path with inertial sensors on the smartphone to assist positioning. Secondly, the collected data is used to update the radio map and improve its accuracy.
We implement this system on Android smartphone and evaluate the performance. The experiment of results show that our system gets better accuracy than original model-based positioning system.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖次 vii
表次 ix
第一章 導論 1
1.1 研究背景 1
1.1.1 Wi-Fi介紹 1
1.1.2 Wi-Fi定位方式 5
1.2 研究動機 6
1.3 論文架構 7
第二章 相關研究 8
2.1 室內定位演算法 8
2.1.1 抵達時間(TOA) 8
2.1.2 抵達時間差(TDOA) 9
2.1.3 抵達角度(AOA) 10
2.1.4 接收訊號強度(RSS) 10
2.2 定位相關技術 11
2.2.1 全球定位系統 11
2.2.2 紅外線定位技術 13
2.2.3 超音波定位技術 13
2.2.4 射頻識別定位技術 14
2.2.5 Wi-Fi定位技術 15
2.2.6 綜合比較 16
2.3 慣性感測器 16
第三章 系統之架構與運作 18
3.1 使用流程 18
3.2 建置階段 20
3.2.1 設定環境資訊 20
3.2.2 建立radio map 21
3.2.3 牆壁數量判斷 22
3.3 使用階段 24
3.3.1 使用流程 24
3.3.2 使用路徑定位的優點 32
3.4 紀錄階段 33
3.4.1 紀錄流程 33
3.4.2 紀錄階段的優點 34
第四章 模擬實驗與數據分析 35
4.1 環境相關設定 35
4.2 實驗方式說明 38
4.3 實驗結果 39
第五章 結論 45
參考文獻 46
參考文獻 References
[1] P. Bahl and V. N. Padmanabhan, “RADAR: an In-Building RF-Based User Location and Tracking System,” IEEE INFOCOM 2000, vol. 2, pp. 775-784, Mar. 2000.
[2] B. P. Crow, I. Widjaja, J. G. Kim and P. T. Sakai, “IEEE 802.11 Wireless Local Area Networks,” IEEE Communications Magazine, vol. 35, no. 9, pp. 116-126, Sep. 1997.
[3] H. Zhu, M. Li and I. Chlamtac, “A Survey of Quality of Service in IEEE 802.11 Networks,” IEEE Wireless Communications, vol. 11, no. 4, pp. 6-14, Aug. 2004.
[4] M. D. Dianu, J. Riihijärvi and M. Petrova, “Measurement-Based Study of the Performance of IEEE 802.11ac in an Indoor Environment,” 2014 IEEE International Conference on Communications (ICC), pp. 5771-5776, Jun. 2014.
[5] H. Koyuncu and S. H. Yang, “A Survey of Indoor Positioning and Object Locating Systems,” International Journal of Computer Science and Network Security (IJCSNS), vol. 10, no. 5, pp. 121-128, May 2010.
[6] C. Feng, W. S. A. Au and S. Valaee, “Received-Signal-Strength-Based Indoor Positioning Using Compressive Sensing,” IEEE Transactions on Mobile Computing, vol. 11, no. 12, pp. 1983-1993, Dec. 2012.
[7] F. Zhao, W. Yao and C. C. Logothetis, “Comparison of Super-Resolution Algorithms for TOA Estimation in Indoor IEEE 802.11 Wireless LANs,” International Conference on Wireless Communications, pp. 1-5, Sep. 2006.
[8] T. Han, X. C. Lu and Q. Lan, “Pattern Recognition Based Kalman Filter for Indoor Localization Using TDOA Algorithm,” Applied Mathematical Modelling, vol. 34, no. 10, pp. 2893-2900, Oct. 2010.
[9] M. Roshanaei and M. Maleki, “Dynamic-KNN: A Novel Locating Method in WLAN Based on Angle of Arrival,” IEEE Symposium on Industrial Electronics and Applications, vol. 2, pp. 722-726, Oct. 2009.
[10] E. D. Kaplan and C. J. Hegarty, Understanding GPS: Principles and Applications, Boston: Artech House, Nov. 2005.
[11] P. Misra and P. Enge, Global Positioning System: Signals, Measurements and Performance, 2nd ed., Massachusetts: Ganga-Jamuna Press, Dec. 2010.
[12] G. M. Djuknic and R. E. Richton, “Geolocation and Assisted GPS,” Computer, vol. 32, no. 2, pp. 123-125, Feb. 2001.
[13] T. H. Chang, L. S. Wang and F. R. Chang, “A Solution to the III-Conditioned GPS Positioning Problem in an Urban Environment,” IEEE Transactions on Intelligent Transportation Systems, vol. 10, no. 1, pp. 135-145, Feb. 2009.
[14] R. Want, A. Hopper, V. Falcão and J. Gibbons, “The Active Badge Location System,” ACM Transactions on Information Systems (TOIS), vol. 10, no. 1, pp. 91-102, Jan. 1992.
[15] A. Ward, A. Jones and A. Hopper, “A New Location Technique for the Active Office,” IEEE Personal Communications, vol. 4, no. 5, pp. 42-47, Oct. 1997.
[16] M. Addlesee, R. Curwen, S. Hodges, J. Newman, P. Steggles, A. Ward and A. Hopper, “Implementing a Sentient Computing System,” Computer, vol. 34, no. 8, pp. 50-56, Aug. 2001.
[17] S. S. Saab and Z. S. Nakad, “A Standalone RFID Indoor Positioning System Using Passive Tags,” IEEE Transactions on Industrial Electronics, vol. 58, no. 5, pp. 1961-1970, Jul. 2010.
[18] L. M. Ni, Y. Liu, Y. C. Lau and A. P. Patil, “LANDMARC: Indoor Location Sensing Using Active RFID,” Wireless Networks, vol. 10, no. 6, pp. 701-710, Mar. 2004.
[19] M. Youssef and A. Agrawala, “The Horus Location Determination System,” Wireless Networks, vol. 14, no. 3, pp. 357-374, Jan. 2008.
[20] W. G. Griswold, P. Shanahan, S. W. Brown, R. Boyer, M. Ratto, R. B. Shapiro and T. M. Truong, “ActiveCampus: Experiments in Community-Oriented Ubiquitous Computing,” Computer, vol. 34, no. 10, pp. 78-81, Oct. 2004.
[21] Y. C. Cheng, Y. Chawathe, A. LaMarca and J.Krumm, “Accuracy Characterization for Metropolitan-Scale Wi-Fi Localization,” 3rd International Conference on Mobile Systems, Applications, and Services, pp. 233-245, Jan. 2005.
[22] J. Park, B. Charrow, D. Curtis, J. Battat, E. Minkov, J. Hicks, S. Teller and J. Ledlie, “Growing an Organic Indoor Location System,” 8th International Conference on Mobile Systems, Applications, and Services, pp. 271-284, Jun. 2010.
[23] H. Lim, L.C. Kung, J.C. Hou and H. Luo, “Zero-Configuration Indoor Localization over IEEE 802.11 Wireless Infrastructure,” Wireless Networks, vol. 16, no. 2, pp. 405-420, Jun. 2008.
[24] K. Chintalapudi, A. P. Iyer, and V. N. Padmanabhan, “Indoor Localization without the Pain,” 16th Annual International Conference on Mobile Computing and Networking, pp. 173-184, Sep. 2010.
[25] Y. Ji, S. Biaz, S. Pandey and P. Agrawal, “ARIADNE: A Dynamic Indoor Signal Map Construction and Localization System,” 4th International Conference on Mobile Systems, Applications and Services, pp. 151-164, Jun. 2006.
[26] D. Madigan, E. Einahrawy, R. P. Martin, W. H. Ju, P. Krishnan and A. S. Krishnakumar, “Bayesian Indoor Positioning Systems,” 24th Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 2, pp. 1217-1227, Mar. 2005.
[27] S. Y. Cho, and C. G. Park, “MEMS Based Pedestrian Navigation System,” The Journal of Navigation, vol. 59, no. 1, pp. 135-153, Jan. 2006.
[28] S. E. Crouter, P. L. Schneider, M. Karabulut and D. R. Bassett, “Validity of 10 Electronic Pedometers for Measuring Steps, Distance, and Energy Cost,” Medicine and Science in Sports and Exercise, vol. 35, no. 8, pp. 1455-1460, Apr. 2003.
[29] L. Ojeda and J. Borenstein, “Non-GPS Navigation for Security Personnel and First Responders,” The Journal of Navigation, vol. 60, no. 3, pp. 391-407, Sep. 2007.
[30] X. Yun, E. R. Bachmann, H. Moore and J. Calusdian, “Self-Contained Position Tracking of Human Movement Using Small Inertial/Magnetic Sensor Modules,” 2007 IEEE International Conference on Robotics and Automation, pp. 2526-2533, Apr. 2007.
[31] R. Feliz, E. Zalama and J. G. García-Bermejo, “Pedestrian Tracking Using Inertial Sensors,” Journal of Physical Agents, vol. 3, no. 1, Jan. 2009.
[32] S. Jayalath, N. Abhayasinghe and I. Murray, “A Gyroscope Based Accurate Pedometer Algorithm,” International Conference on Indoor Positioning and Indoor Navigation, vol. 28, Oct. 2013.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code