Responsive image
博碩士論文 etd-0714117-121755 詳細資訊
Title page for etd-0714117-121755
論文名稱
Title
Glutathione 調控單胞藻 (Chlamydomonas reinhardtii) 強光馴化 : glutathime redox status 之重要性
Glutathione Regulation of the Acclimation of Chlamydomonas reinhardtii to High-intensity Illumination: the Importance of Glutathione Redox Status
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
118
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-05-31
繳交日期
Date of Submission
2017-08-14
關鍵字
Keywords
單胞藻 (Chlamydomonas reinhardtii)、耐性、強光、氧化逆境、Glutathione Reductase (GR)、Glutathione
high light stress, Chlamydomonas reinhardtii, Glutathione Reductase (GR), Glutathione, tolerance, oxidative stress
統計
Statistics
本論文已被瀏覽 5642 次,被下載 27
The thesis/dissertation has been browsed 5642 times, has been downloaded 27 times.
中文摘要
強光逆境下,植物對光的吸收大於其光合作用所能使用及排除的限度時,過多的能量會由氧氣接收,使細胞內產生大量的活性氧化物質 (reactive oxygen species, ROS),造成細胞內大分子結構改變進而導致生理代謝及生長分化變異。本研究發現在 TAP 混營之可存活強光 (1,400 uE m-2 s-1) 下,單胞藻 (Chlamydomonas reinhardtii P. A. Dangeard) 在短時間 ( 3 小時內) 會有光合作用速率下降、 glutathione (GSH) 含量、glutathione reductase 基因表現量及 glutathione reductase (GR, EC 1.6.4.2) 活性增加,但 GSH/GSSG 先下降,接著隨光合作用速率於 6 小時開始恢復,而 GSH 含量則下降至對照組 (50 uE m-2 s-1) 狀態,GSH/GSSG 比率在 24 小時也恢復與對照組相似狀態,推論 GSH 大量增加及 GR 活性對於保持正常 GSH 氧化還原狀態 (redox state) 維持與強光耐性有關,因此本研究先針對 GR 對於單胞藻強光耐性之重要性進行探討,主要實驗以抑制表達 (downregulation) 與過度表達 (overexpression) 單胞藻 GSHR1 (CrGSHR1; NCBI number : XM_001696527.1; JGI number : Cre06.g262100) 及 GSHR2 (CrGSHR2; NCBI number : XM_001694648.1; JGI number : Cre09.g396252) 轉殖株探討 GSH 氧化還原狀態對強光耐性之重要性。抑制表達 CrGSHR 轉殖株材料為經 pChlamyiRNA_3 vector 轉殖 PSAD::CrGSHR-amiRNA 所獲得之 GSHR1-ami 102 和 GSHR1-ami 105;過度表達 CrGSHR 轉殖株材料為經 pChlamy vector 轉殖 HSP70A-RBCS2::CrGSHR 所獲得之 GSHR1-77 和 GSHR2-136。抑制表達轉殖株經強光處理 (1,400 uE m-2 s-1) 後存活率低於野生型,且脂質過氧化程度含量高於野生型;而過度表達轉殖株在強光處理 (1,800 uE m-2 s-1) 下存活率提高,且脂質過氧化程度低於野生型。綜合結果,CrGSHR 能夠提高單胞藻 GSH 轉換效率進而降低氧化傷害,增加單胞藻對強光逆境的抗性。
Abstract
This study examines the role of glutathione reductase (GR, EC 1.6.4.2) in the tolerance of a green alga Chlamydomonas reinhardtii (Chlamydomonas reinhardti PA Dangeard, C. reinhardtii) to light stress. We found that C. reinhardtii showed a decrease in photosynthetic rate and glutathione (GSH) content within 3 hours after high light (HL; 1,400 μE m-2 s-1) and recovered after 9-24 hours. Upon exposure to HL stress, glutathione reductase gene expression and enzyme activity increased, but glutathione redox ratio (GSH/GSSG) decreased. It is proposed that the increase in GSH and the maintenance of GSH/GSSG ratio through enhanced GR activity are related to the tolerance of C. reinhardtii to HL stress. This study examines the role of GR in HL stress tolerance in C. reinhardtii via downregulation and overexpression were performed on C. reinhardtii glutathione reductase 1 (CrGSHR1; NCBI number: XM_001696527.1; JGI number : Cre06.g262100) and glutathione reductase 2 (CrGSHR2; NCBI number : XM_001694648.1; JGI number: Cre09.g396252). We have obtained two CrGSHR1-knockdown lines (GSHR1-ami 102 and 105) and CrGSHR1-overexpressing line (GSHR1-77) and CrGSHR2-overexpressing line (GSHR2-136). The CrGSHR1-knockdown line was in tolerant to 1,400 μE m-2 s-1 illuminatine. Overexpression line can increase their survival and low lipid peroxidation after treatment with high-intensity illumination (1,800 μE m-2 s-1). Taken together, GSH conversion efficiency can be improved by CrGSHR and reduce oxidative damage while increasing the resistance of C. reinhardtii to high light stress.
目次 Table of Contents
論文審定書 i
論文公開授權書 ii
誌謝 iii
中文摘要 iv
英文摘要 v
目錄 vii
圖目錄 viii
表目錄 xi
縮寫對照表 xiv
壹、 前言 1
貳、 材料與方法 6
參、 結果 35
肆、 討論 45
伍、 參考文獻 48
參考文獻 References
吳宗孟。(2009) 大型海藻裂片石蓴 (Ulva fasciata Delile) 過量銅毒害之基因表現。國立中山大學海洋生物研究所博士論文。台灣,中華民國。
林楷智。(2014) 大型海藻裂片石蓴 (Ulva fasciata Delile) 大量表現大型海藻裂片石蓴 (Ulva fasciata Delile) Glutathione Reductase 提高水稻 (Oryza sativa L.) 幼苗耐鹽性之研究。國立中山大學海洋科學系研究所碩士論文。台灣,中華民國。
Alvarez JP, Pekker I, Goldshmidt A, Blum E, Amsellem Z, Eshed Y. (2006) Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell 18: 1134-1151.
Ambros V. (2001) MicroRNAs: tiny regulators with great potential. Cell 107: 823-826.
Apel K and Hirt H. (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol 55: 373-399.
Arnon DI. (1949) Copper enzymes in isolated chloroplasts, polyphenoxidase in beta vulgaris. plant physiol. 24: 1-15.
Bradford MM. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of dye binding. Anal. Biochem. 72; 248-254.
Chang HL, Kang CY, Lee TM. (2013) Hydrogen peroxide production protects Chlamydomonas reinhardtii against light-induced cell death by preventing singlet oxygen accumulation through enhanced carotenoid synthesis. J. Plant Physiol 170: 976-986.
David BS. (2009) The Chlamydomonas Sourcebook: organellar and metabolic processes. Academic Press, Inc., San Diego, CA. 25-40.
Ding SH, Lu QT, Zhang Y, Yang ZP, Wen XG, Zhang LX, Lu CM. (2009) Enhanced sensitivity to oxidative stress in transgenic tobacco plants with decreased glutathione reductase activity leads to a decrease in ascorbate pool and ascorbate redox state. Plant Mol Biol. 69: 577-592.
Elbashir SM, Lendeckel W, Tuschl T. (2001) RNA interference is mediated by 21-and 22-nucleotide RNAs. Genes Dev. 15: 188-200.
Eshdat Y, Holland D, Faltin Z, BenHayyim G. (1997) Plant glutathione peroxidases. Physiol. Plant. 100: 234-240.
Fire A, Xu S, Montgomery M, Kostas S, Driver S, Mello C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391 (6669): 806-11.
Foster JG and JL Hess. (1980) Responses of superoxide dismutase and glutathione reductase activities in cotton leaf tissue exposed to an atmosphere enriched in oxygen. Plant Physiol. 166: 482-487.
Fuhrmann M, Stahlberg A, Govorunova E, Rank S, Hegemann P. (2001) The abundant retinal protein of the Chlamydomonas eye is not the photoreceptor for phototaxis and photophobic responses. J. Cell Sci. 114: 3857-3863.
Gorman DS and Levine RP. (1965) Cytochrome F and Plastocyanin - their sequence in photosynthetic electron transport chain of Chlamydomonas reinhardi. Proc. Natl. Acad. Sci. USA 54: 1665-1669.
Griffiths OW. (1980) Determination of glutathione and glutathione disulphide using glutathione reductase and 2-vinylpyridine. Anal. Biochem. 106: 207-212.
Health RL and Packer L. (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichemtry of fatty acid peroxidation. Arch. Biochem. Biophys. 125: 189-198.
Hutner SH, Provasoli L, Schatz A, Haskins CP. (1950) Some approaches to the study of the role of metals in the metabolism of microorganisms. Proc. Am. Philos. Soc. 94: 152-170
Irihimovitch V and Shapira M. (2000) Glutathione redox potential modulated by reactive oxygen species regulates translation of rubisco large subunit in the chloroplast. J. Biol. Chem. 275: 16289-16295.
Jaleel CA, Riadh K, Gopi R, Manivannan P, Ines J, Al-Juburi H, Chang-Xing Z, Hong-Bo S, Panneerselvam R. (2009) Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiol. Plant. 31: 427-436.
Jithesh MN, Prashanth SR, Sivaprakash KR, Parida AK. (2006) Antioxidative response mechanisms in halophytes: their role in stress defence. J.Genet. 85: 237-254.
Kato M and Shimizu S. (1987) Chlorophyll metabolism in higher plants. VII. Chlorophyll degradation in senescing tobacco leaves: phenolic-dependent peroxidative degradation. Can. J. Bot. 65: 729-735.
Khvorova A, Reynolds A, Jayasena SD. (2003) Functional siRNAs and miRNAs Exhibit Strand Bias. Cell 115: 209-216.
Kornyeyev D, Logan BA, Payton PR, Allen RD, Holaday AS. (2003) Elevated chloroplastic glutathione reductase activities decrease chilling-induced photoinhibition by increasing rates of photochemistry, but not thermal energy dissipation,in transgenic cotton. Function. Plant Biol. 30: 101-110.
Kotchoni SO and Gachomo EW. (2006) The reactive oxygen species network pathways: an essential prerequisite for perception of pathogen attack and the acquired disease resistance in plants. J. Biosci. 31: 389-404.
Kuk YI, Shin JS, Burgos NR, Hwang TE, Han O, Cho BH, Jung SY, Guh JO. (2003) Antioxidative enzymes offer protection from chilling damage in rice plants. Crop Science 43: 2109-2117.
Lin ST, Chiou CW, Chu YL, Hsiao Y, Tseng YF, Chen YC, Chen HJ, Chang HY, Lee TM. (2016) Enhanced ascorbate regeneration via dehydroascorbate reductase confers tolerance to photo-oxidative stress in Chlamydomonas reinhardtii. Plant Cell Physiol. 57: 2104-2121.
Mahajan S and Tuteja N. (2005) Cold, salinity and drought stresses: An overview. Arch. Biochem. Biophys. 444: 139-158.
Mandhania S, Madan S, Sawhney V. (2006) Antioxidant defense mechanism under salt stress in wheat seedlings. Biol. Plant. 50: 227-231.
Martin MN. (2003) Biosynthesis and metabolism of glutathione in plants. Genet. Eng. 25: 163-188.
Maxwell K and Johnson GN. (2000) Chlorophyll fluorescence - a practical guide. Journal of Experimental Botany. J. Exp. Bot. 51: 659-668.
Melchiorre M, et al. (2009) Superoxide dismutase and glutathione reductase overexpression in wheat protoplast: photooxidative stress tolerance and changes in cellular redox state. Plant Growth Regul. 57: 57-68.
Merchant SS, Prochnik SE, Vallon O, et al. (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318: 245-50.
Mi S, Cai T, Hu Y, Chen Y, Hodges E, Ni F, Wu L, Li S, Zhou H, Long C, Chen S, Hannon GJ, Qi Y. (2008) Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5’ terminal nucleotide. Cell 133: 116-127.
Molnar EH. (1989) The Chlamydomonas Sourcebook. Academic Press, Inc., San Diego, CA. 25-40.
Molnar A, Bassett A, Thuenemann E, Schwach F, Karkare S, Ossowski S, Weigel D, Baulcombe D. (2009) Highly specific gene silencing by artificial microRNAs in the unicellular alga Chlamydomonas reinhardtii. Plant J. 58: 165-174.
Mullineaux PM and Rausch T. (2005) Glutathione, photosynthesis and the redox regulation of stress-responsive gene expression. Photosynth. Res. 86: 459-474.
Niu QW, Lin SS, Reyes JL, Chen KC, Wu HW, Yeh SD, Chua NH. (2006) Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat. Biotechnol. 24: 1420-1428.
Niyogi KK. (1999) Photoprotection revisited: Genetic and molecular approaches. Annu. Rev. Plant Biol. 50: 333-359.
Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH. (2012) Glutathione in plants: an integrated overview. Plant Cell Environ. 35: 454-484.
Parizotto EA, Dunoyer P, Rahm N, Himber C, Voinnet O. (2004) In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA. Genes Dev. 18: 1-6.
Pilon-Smits EAH, Zhu YL, Sears T, Terry N. (2000) Overexpression of glutathione reductase in Brassica juncea: Effects on cadmium accumulation and tolerance. Physiol. Plant 110: 455-460.
Poage M, Le Martret B, Jansen MAK, Nugent GD, Dix PJ. (2011) Modification of reactive oxygen species scavenging capacity of chloroplasts through plastid transformation. Plant Mol. Biol. 76: 371-384.
Rohr J, Sarkar N, Balenger S, Jeong BR, Cerutti H. (2004) Tandem inverted repeat system for selection of effective transgenic RNAi strains in Chlamydomonas. Plant J. 40: 611-621.
Sairam RK, Srivastava GC, Agarwal S, Meena RC. (2005) Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biol. Planta. 49: 85-91.
Saruyama H and Tanida M. (1995) Effect of chilling on activated oxygen-scavenging enzymes in low temperature-sensitive and temperature-tolerant cultivars of rice (Oryza sativa L.). Plant Sci. 109: 105-113.
Schroda M. (2006) RNA silencing in Chlamydomonas: mechanisms and tools. Curr. Genet. 49: 69-84.
Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D. (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18: 1121-1133.
Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD. (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115: 199-208.
Serrano A and Llobell A. (1993) Occurrence of two isoforms of glutathione reductase in the green alga Chlamydomonas reinhardtii. Planta 190: 199-205.
Shiu CT and Lee TM. (2005) Ultraviolet-B-induced oxidative stress and responses of the ascorbate-glutathione cycle in a marine macroalga Ulva fasciata. J. Exp. Botan.56: 2851-2865.
Strohm M, Eiblmeier M, Langebartels C, Jouanin L, Polle A, Sandermann H, Rennenberg H. (1999) Responses of transgenic poplar (Populus tremula x P. alba) overexpressing glutathione synthetase or glutathione reductase to acute ozone stress: visible injury and leaf gas exchange. J. Exp. Bot. 50: 365-374.
Sung MS, Hsu YT, Hsu YT, Wu TM, Lee TM. (2009) Hypersalinity and hydrogen peroxide upregulation of gene expression of antioxidant enzymes in Ulva fasciata against oxidative stress. Marine Biotechnol. 11: 199-209.
Tian J, Yu J. (2009) Changes in ultrastructure and responses of antioxidant systems of algae (Dunaliella salina) during acclimation to enhanced ultraviolet-B radiation. J. Photochem. Photobiol. B-Biol. 97: 152-160.
Vaidyanathan H, Sivakumar P, Chakrabarty R, Thomas G. (2003) Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.) - differential response in salt-tolerant and sensitive varieties. Plant Sci. 165: 1411-1418.
Warthmann N, Chen H, Ossowski S, Weigel D, Herve P. (2008) Highly specific gene silencing by artificial miRNAs in rice. PLoS ONE 3: e1829.
Wu TM and Lee TM. (2008) Regulation of activity and gene expression of antioxidant enzymes in Ulva fasciata Delile (Ulvales, Chlorophyta) in response to excess. Phycologia 47: 346-360.
Wu TM, Hsu YT, Lee TM. (2009) Effects of cadmium on the regulation of antioxidant enzyme activity, gene expression, and antioxidant defenses in the marine macroalga Ulva fasciata. Bot. Studies 50: 25-34.
Xu P, Zhang Y, Kang L, Roossinck MJ, Mysore KS. (2006) Computational estimation and experimental verification of off-target silencing during posttranscriptional gene silencing in plants. Plant Physiol. 142: 429-40.
Yadav SK. (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S. Afr. J. Bot. 76: 167-179.
Zeng Y, Wagner EJ, Cullen BR. (2002) Both natural and designed micro RNAs technique can inhibit the expression of cognate mRNAs when expressed in human cells. Mol. Cell 9: 1327-1333.
Zhou YH, Zhang YY, Zhao X, Yu HJ, Shi K, Yu JQ. (2009) Impact of light variation on development of photoprotection, antioxidants, and nutritional value in Lactuca sativa L. J. Agric. Food Chem. 57: 5494-5500.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code