Responsive image
博碩士論文 etd-0714117-124155 詳細資訊
Title page for etd-0714117-124155
論文名稱
Title
以CuInSe2薄膜做為超薄矽晶太陽電池底部吸收層之元件模擬與評估
A Simulation study of an ultra-thin Si solar cell with CuInSe2 as bottom absorption layer
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
98
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-25
繳交日期
Date of Submission
2017-08-14
關鍵字
Keywords
CuInSe2、PC1D太陽電池元件模擬、超薄矽晶同質接面、二維半導體材料(InSe)、凡德瓦爾磊晶法
2D semiconducting material (InSe), Van der Waals epitaxy, CuInSe2, PC-1D device simulation tool for solar cells, Ultra-thin Si homojunction
統計
Statistics
本論文已被瀏覽 5731 次,被下載 817
The thesis/dissertation has been browsed 5731 times, has been downloaded 817 times.
中文摘要
矽基板佔矽晶太陽能電池成本的40%,若能製作出超薄矽晶太陽能電池,則可降低太陽能電池的成本,更有機會發展可撓性的應用。然而受限於矽晶的光吸收特性,其厚度小於50μm時會有高於 23 %的太陽光無法被吸收發電。本研究即以光吸收係數高達10∧5/cm的CuInSe2(簡稱CIS)薄膜結合超薄Si同質接面(Homojunction)成為新型元件結構以解決上述問題,並探討CIS/Si界面改質方法對元件發電特性的影響。這項研究主要以PC-1D太陽電池元件模擬程式代入各方實驗室測得的材料性質參數進行運算,並利用Taguchi法進行元件優化。由於晶矽與CIS的晶格不匹配程度過高,導致界面複合速率高達4.79x10∧5 cm/s,故而當矽基板厚度為10μm時,其元件發電效率僅為18.9% (Voc=0.673V, Isc=33.5mA, FF=83.8%)。在界面改質方面,先以氫化非晶矽或氫化非晶鍺進行界面鈍化,並用具多晶結構的CIS為吸收層。然而其元件發電效率相較於上述元件僅提升不到2%,主要歸因於多晶CIS之材料性質遜於單晶者(多晶CIS的光吸收係數為10∧4/cm,僅有單晶CIS的1/10;而在載子濃度同為1x10∧19 holes/cm3之下,多晶CIS之擴散長度為200nm,是單晶CIS的1/15)。接著,試以凡德瓦爾磊晶法在Si與CIS之間置入具二維材料結構的InSe半導體膜層以隔斷界面差排的出現,因InSe在元件能帶結構的導帶和價帶不連續位置產生的落差不一,其能障可導致電子與電洞的分離,以至於在元件結構中呈現有如雙電池堆曡串聯的效果。當前最佳化的元件結構為n-Si(100nm)/p-Si(5μm)/ p-InSe(20nm)/p-CIS(1700nm),其模擬結果顯示該元件結構其發電效率可達32.5% (Voc=0.781V, Isc=50.9mA, FF=81.8%)。
Abstract
The cost analysis of a crystalline Si solar cell indicates a considerable cost percentage belonging to the Si wafer. The advantages to use ultrathin Si wafers (5 ~ 50 μm in thickness) not only cut down the material cost but also extend its application on BIPV due to the flexibility of final product. A reduction in the wafer thickness may cause a significant loss of light absorption in Si. In this work, an efficient light absorber of CuInSe2 (CIS) with an optical coefficient as high as 10∧5 /cm is attached to the bottom of a Si homojunction to form a novel device structure of n-Si/p-Si/p-CIS. We perform the device simulation study by using PC-1D simulation tool along with the experimental data of material parameters acquired from the literature survey. Furthermore, Taguchi method has been applied to help optimizing the device performance. Since a large lattice mismatch between Si and CIS causes high surface recombination velocity of 4.79x10∧5 cm/s at the interface, an energy conversion efficiency of 18.9% (Voc=0.637V, Isc=33.5mA, FF=83.8%) is obtained. Modification of interfacial structure through the incorporation of a hydrogenated amorphous Si or Ge film at the Si/CIS interface has been proposed but the improvement in the energy conversion efficiency limited to only about 2%. It is attributed to the inferior properties of polycrystalline CIS as compared with those of single-crystalline CIS. Another way proposed for interface modification is the use of Van der Waals Epitaxy, i.e. a thin layer of 2D material such as InSe is inserted between Si and CIS in order to prohibit the formation of misfit dislocations at the interface. There exist the discontinuity of conduction band and valence band with different values at the Si/CIS interface, which in turn may separate the electrons and holes generated in CIS after light absorption. This leads to a tandem-cell behavior in our device. With a proper adjustment of device parameters, a device structure of n-Si(100nm)/p-Si(5μm)/p-InSe(20nm)/p-CIS(1700nm) may reach an energy conversion efficiency of 32.5% (Voc=0.781V, Isc=50.9mA, FF=81.8%).
目次 Table of Contents
論文審定書 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vii
表目錄 ix

第一章 緒論 1
1-1 前言 1
1-2 矽晶太陽能電池 4
1-3 CuInSe2材料基本性質 8
1-4研究動機與目的 13
第二章 PC1D 之介紹 15
2-1 PC1D介紹 15
2-2 PC1D之基礎方程式 15
2-2-1 載子傳輸(transport) 15
2-2-2 帶電載子分佈統計學(載子密度) 16
2-2-3 連續方程式 17
2-2-4 波松方程式(Poisson’s equation) 18
2-2-5 邊界條件 19
2-3 PC1D之物理模型 20
2-3-1 折射率(index of refraction) 20
2-3-2 光吸收係數(optical absorption coefficient) 21
2-3-3 自由載子吸收(Free-carrier absorption) 22
2-3-4 電容率(Permitivity) 23
2-3-5 能帶結構(band structure) 23
2-3-6 能帶窄化(Bandgap narrowing)(BGN) 24
2-3-7 遷移率(Mobility) 25
2-3-8 載子復合(recombination) 26
2-3-9 未完全游離的摻雜(Incomplete ionization) 27
第三章 Si-CIS元件設計與模擬結果 28
3-1 P-N單晶矽元件設計與模擬 28
3-1-1 PERL之模擬 29
3-1-2 單晶矽厚度與摻雜濃度 30
3-1-3 PN接面深度與摻雜濃度 32
3-1-4 P-N單晶矽之模擬結果 32
3-2 Si-CIS元件設計 34
3-2-1 界面與表面之復合速率 35
3-2-2 CIS載子濃度與遷移率之關係 36
3-2-3以田口法分析SiCIS之模擬結果與討論 38
3-2-4 CIS厚度對SiCIS元件效率之影響 43
3-2-5 CIS載子濃度對SiCIS元件效率之影響 45
3-2-6界面復合速率對SiCIS元件效率之影響 46
第四章 以非晶矽或非晶鍺鈍化界面之設計與模擬結果 47
4-1多晶CIS之材料引用 47
4-1-1 多晶CIS材料基本性質 47
4-1-2 多晶CIS載子濃度與遷移率之關係 48
4-2以非晶矽鈍化界面層之元件設計與模擬 50
4-2-1 非晶矽之材料參數 50
4-2-2 以田口法分析元件之模擬結果與討論 51
4-2-3 多晶CIS載子濃度對元件效率之影響 55
4-3以非晶鍺鈍化界面層之元件設計與模擬 56
4-3-1 非晶鍺之材料參數 56
4-3-2 以田口法分析元件之模擬結果與討論 57
4-3-3非晶鍺厚度對元件效率之影響 61
4-4以非晶材料鈍化界面之結論 63
第五章 以凡德瓦爾磊晶鈍化界面之設計與模擬結果 64
5-1以InSe鈍化界面之元件設計 64
5-1-1 InSe之材料參數 64
5-1-2 InSe載子濃度與載子遷移率之關係 65
5-2元件設計之模擬結果 67
5-2-1 以田口法分析元件之模擬結果與討論 67
5-2-2 矽基板厚度與元件效率之討論 70
5-2-3 CIS與InSe載子濃度對元件效率之影響 73
5-2-4 InSe與CIS厚度對元件效率之影響 75
5-2-5 減薄矽基板厚度對元件表現之影響 77
5-2-6元件之結論 78
第六章 結論 80
第七章 參考文獻 82
參考文獻 References
[1] Fraunhofer Institute for Solar Energy Systems, "Photovoltaics report," https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf, 2016.
[2] S. Narasimha, G. Crotty, T. Krygowski, A. Rohatgi, and D. L. Meier," Back surface field and emitter passivation effects in the record high efficiency N-type dendritic web silicon solar cell," in proc. 26th IEEE photovoltaic specialists conference, Anaheim, California, USA, p. 235, 1997.
[3] T. Jana, S. Mukhopadhyay and S. Ray, "Low temperature silicon oxide and nitride for surface passivation of silicon solar cells," Solar Energy Materials and Solar Cells, vol. 71, no. 2, p. 197, 2002.
[4] J. Zhao, A. Wang and M. A. Green, "High-efficiency PERL and PERT silicon solar cells on FZ and MCZ substrates," Solar Energy Materials and Solar Cells, vol. 65, p. 429, 2001.
[5] C. Kranz, S. Wyczanowski, S. Dorn, K. Weise, C. Klein, K. Bothe, T. Dullweber, and R. Brendel, "Impact of the rear surface roughness on industrial-type PERC solar cells," in proc. 27th European Photovoltaic Solar Energy Conference, Frankfurt, Germany, p. 557, 2012.
[6] S. Xiao and S. Xu, "High-efficiency silicon solar cells—materials and devices physics," Critical Reviews in Solid State and Materials Sciences, vol. 39, no. 4, p. 217, 2014
[7] M. D. Lammert and R. J. Schwartz, "The interdigitated back contact solar cell: silicon solar cell for use in concentrated sunlight," IEEE Transactions On Electron Devices, vol. 24, no. 4, p. 337, 1977.
[8] S. Dauwe, J. Schmidt, and R. Hezel, "Very low surface recombination velocities on P- and N-type silicon wafers passivated with hydrogenated amorphous silicon films," in proc. 29th IEEE Photovoltaic Specialists Conference, New Orleans, Louisiana, USA, p. 1246, 2002.
[9] K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, "Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%," Nature Energy, vol. 2, no. 5, 17032, 2017.

[10] B. J. Stanbery, "Copper indium selenides and related materials for photovoltaic devices," Critical Reviews in Solid State and Materials Sciences, vol. 27, no. 2, p. 73, 2002.
[11] F. Abou-Elfotouh, D. J. Dunlavy, and T. J. Coutts, "Intrinsic defect states in CuInSe2 single crystals," Solar Cells, vol. 27, p. 237, 1989.
[12] S. R. Kodigala, Thin films and nanostructures Cu(In1-xGax)Se2 based thin film solar cells, 1st ed. Academic Press, 2010.
[13] International Technology Roadmap for Photovoltaic (ITRPV), "ITRPV 2016 Results," http://www.itrpv.net/Reports/Downloads, 2017.
[14] 劉禮寬, "製備CuInSe2磊晶薄膜並應用於超薄矽晶太陽能電池", 中山大學材料所碩士論文, 2016.
[15] 劉士綸, "新型高效率超薄矽基異質接面太陽電池的元件結構設計模擬及製作", 中山大學材料所碩士論文, 2016.
[16] M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, "24.7% record efficiency HIT solar cell on thin silicon wafer," IEEE Journal of Photovoltaics, vol. 4, no. 1, p. 96, 2014.
[17] M. A. Green, "Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients," Solar Energy Materials and Solar Cells, vol. 92, no. 11, p. 1305-10, 2008.
[18] A. Wang, J. Zhao, and M. A. Green, "24% efficient silicon solar cells," Applied Physics Letters, vol. 57, no. 6, p. 602, 1990.
[19] M. Rüdiger, J. Greulich, A. Richter, and M. Hermle, "Parameterization of free carrier absorption in highly doped silicon for solar cells," IEEE Transactions on Electron Devices, vol. 60, no. 7, p. 2156, 2013.
[20] D. M. Caughey, and R. E. Thomas, "Carrier mobilities in silicon empirically related to doping and field," Proceedings of the IEEE, vol. 55, no. 12, p. 2192, 1967.
[21] N. D. Arora, J. R. Hauser and D. J. Roulston, "Electron and hole mobilities in silicon as a function of concentration and temperature," IEEE Transactions on Electron Devices, vol. 29, no. 2, p. 292, 1982.
[22] D. N. Wright, E. S. Marstein and A. Holt, "Double layer anti-reflective coatings for silicon solar cells," In proc. 31th IEEE Photovoltaic Specialists Conference, Lake Buena Vista, FL, USA, p. 1237, 2005.
[23] J. G. Fossom, R. P. Mertens, D. S. Lee, and J. F. Nijs, "Carrier recombination and lifetime in hightly doped silicon," Solid-State Electronics, vol. 26, no. 6, p. 560, 1983.
[24] O. Madelung, Semiconductors-Data-Handbook, 3rd-ed. Springer-Verlag Berlin Heidelberg GmbH, 2004.
[25] M. T. Azar, H. J. Moller, and N. Shoemaker, "Trapping lifetime and carrier mobility measurements in CuInSe2 using surface acoustic wave technique," IEEE Transactions On Ultrasonics, Ferroelectrics and Frequency Control, vol. 40, no. 2, p. 149, 1993.
[26] H. T. Shaban, M. Mobarak, and M. M. Nassary, "Characterization of CuInSe2 single crystal," Physica B: Condensed Matter, vol. 389, no. 2, p. 351, 2007.
[27] S. Thiru, M. Asakawa, K. Honda, A. Kawaharazuka, A. Tackeuchi, T. Makimoto, and Y. Horikoshi, "Study of single crystal CuInSe2 thin films and CuGaSe2/CuInSe2 single quantum well grown by molecular beam epitaxy," Journal of Crystal Growth, vol. 425, p. 203, 2015.
[28] A. Rockett and R. W. Birkmire, "CuInSe2 for photovoltaic applications," Journal of Applied Physics, vol. 70, no. 7, p. 81, 1991.
[29] H. Neumann, "Optical properties and electronic band structure of CuInSe2," Solar Cells, vol. 16, p. 317, 1986.
[30] J. L. Gray, R. J. Schwartz, and Y. J. Lee, "Numerical modeling of CuInSe2 and CdTe solar cells," ECE Technical Reports, paper173, 1994.
[31] J. R. Tuttle, D. Albin, R. J. Matson, and R. Noufi, "A comprehensive study on the optical properties of thinfilm CuInSe2 as a function of composition and substrate temperature," Journal of Applied Physics, vol. 66, no. 9, p. 4408, 1989.
[32] A. F. Fray and P. Lloyd, "Electrical and optical properties of thin P-type films prepared by vacuum evaporation from the chalcopyrite CuInSe2," Thin Solid Films, vol. 58, no. 1, p. 29, 1979.
[33] A. Rothwarf, "CuInSe2/Cd(Zn)S solar cell modeling and analysis," Solar Cells, vol. 16, p. 567, 1986.
[34] P. Lange, H. Neff, M. Fearheiley, K. J. Bachmann, "Photoluminescence and photoconductivity of CuInse2," Physica Review, vol. 31, no. 6, p. 4074, 1985.
[35] H. Neumann, R. D. Tomlinson, "Relation between electrical properks and composition in CuInSe2 single crystals," Solar Cells, vol. 28, no. 4, p. 301, 1990.
[36] M. Tanda, S. Manaka, J. R. E. Marin, K. Kushiya, H. Sano, A. Yamada, M. Konagai, K. Takahashi, "Photoluminescence study of CuInSe2 thin films prepared by the selenization technique," in proc. 22nd IEEE Photovoltaic Specialists Conference, Las Vegas, Nevada, USA, p. 1169, 1991.
[37] B. Vermang, V. Fjällström, J. Pettersson, P. Salomé and M. Edoff, "Development of rear surface passivated Cu(In,Ga)Se2 thin film solar cells with nano-sized local rear point contacts," Solar Energy Materials and Solar Cells, vol. 117, p. 505.
[38] W. W. Hsu, J. Y. Chen, T. H. Cheng, S. C. Lu, W. S. Ho, Y. Y. Chen, Y. J. Chien and C. W. Liu, "Surface passivation of Cu(In,Ga)Se2 using atomic layer deposited Al2O3," Applied Physics Letters, vol. 100, no. 2, p. 023508, 2012.
[39] T. Irie, S. Endo and S. Kimura, "Electrical properties of p- and n-Type CuInSe2, " Japanese Journal of Applied Physics, vol. 18, no. 7, p. 1303, 1979.
[40] S. Niki, P. J. Fons, A. Yamada, T. Kurafuji, S. Chichibu, H. Nakanishi, W. G. Bi and C. W. Tu, "High quality CuInSe2 films grown on pseudolatticematched substrates by molecular beam epitaxy, " Applied Physics Letters, vol. 69, no. 5, p. 647, 1996.
[41] A. Yoshida, N. Tanahashi, T. Tanaka and Y. Demizu, Y. Yamamoto, T. Yamaguchi, " Preparation of CuInSe2 thin films with large grain by excimer laser ablation," Solar Energy Materials and Solar Cells, vol. 50, p. 7, 1998.
[42] A. N. Y. Samaan, R. Vaidhyanathan and R. Noufi, "Growth and characterization of polycrystalline CuInSe2 thin films," Solar Cells, vol. 16, p. 81, 1986.
[43] R. D. L. Kristensen, S.N. Sahu and D. Haneman, " Flash evaporation of CulnSe2 films," Solar Energy Materials, vol. 17, p. 329, 1988.
[44] C. Goradia and M. Ghalla-Goradia, "Theory of high efficiency (Cd,Zn)S/CuInSe2 thin film solar cells," Solar Cells, vol. 16, p. 611, 1986.
[45] S. Agilana, D. Mangalaraj, Sa. K. Narayandass and G. Mohan Rao, "Effect of thickness and substrate temperature on structure and optical band gap of hot wall-deposited CuInSe2 polycrystalline thin films," Physica B:Condensed Matter, vol. 365, p. 93, 2005.
[46] N. Kavcar, "Study of the sub-bandgap absorption and the optical transitions in CuInSe2 polycrystalline thin flms," Solar Energy Materials and Solar Cells, vol. 52, p. 183, 1998.
[47] M. Varela, E. Bertran, M. Manchon, J. Esteve and J. L. Morenza, "Optical properties of co-evaporated CuInSe2 thin films," Journal of Physics D: Applied Physics, vol. 19, no. 1, p. 127, 1986.
[48] K. K. Chattopadhy, Y. I. Sanyal, S. K. Bhattachar, S. Chaudhuri and A. K. Pal, "Optical properties of CuInSe2 films near the fundamental absorption edge," Physica status solid (a), vol. 125, no. 2, p. 707, 1991.
[49] K. Puech, S. Zott, K. Leo, M. Ruckh and H.W. Schock, "Determination of minority carrier lifetimes in CuInSe2 thin films," Applied Physics Letters, vol. 69, p. 3375, 1996.
[50] M. Varela, J. L. Morenza, J. Esteve and J. M. Codina, "Electrical conductivity of polycrystalline CuInSe2 thin films," Journal of Physics D: Applied Physics, vol. 17, p. 2423, 1984.
[51] M. V. Garcia-cuenca, M. Manchon, M. Varela, A. Lousa and J. L. Morenza, "Electrical transport prorperties of polycrystalline CuInSe2 film," Solar Energy Materials, vol. 17, p. 347, 1988.
[52] M. Schaper, J. Schmidt, H. Plagwitz and R. Brendel, "20.1%-efficient crystalline silicon solar cell with amorphous silicon rear-surface passivation," Progress in Photovoltaics: Research and Applications, vol. 13, no. 5, p. 381, 2005.
[53] H. P. Zhou, D. Y. Wei, S. Xu, S. Q. Xiao, L. X. Xu, S. Y. Huang, Y. N. Guo, S. Khan and M. Xu, "Crystalline silicon surface passivation by intrinsic silicon thin films deposited by low-frequency inductively coupled plasma," Journal of Applied Physics, vol. 112, no. 1, p. 013708, 2012.
[54] A. Morales-Acevedo, N. Hernández-Como, G. Casados-Cruz, "Modeling solar cells: A method for improving their efficiency, "Materials Science and Engineering B, vol. 177, no. 16, p. 1430, 2012.
[55] C. H. Wu, C. A. Hsu and C. C. Yang, "Amorphous Ge passivation effects on Ge solar cells," IEEE Journal of Photovoltaics, vol. 4, no. 3, p. 968, 2014.
[56] N. E. Posthuma, G. Flamand, W. Geens and J. Poortmans, "Surface passivation for germanium photovoltaic cells," Solar Energy Material Solar Cells, vol. 88, p. 37, 2005.
[57] T. D. Moustakast and W. Paul, "Transport and recombination in sputtered hydrogenated amorphoua germann," Physical Review B, vol. 16, no. 4, p. 1564, 1997.
[58] A. H. Clark, "Electrical and optical properties of amorphous Germanium," Physical Review, vol. 154, no.3, p. 750, 1967.
[59] N. Balasundaram, D. Mangalaraj, Sa. K. Narayandass, C. Balasubramanian, "Structure, dielectric, and AC conduction properties of amorphous Germanium thin films," Physica status solid (a), vol. 130, no. 1, p. 141, 1992.
[60] J. Tauc, R. Grigorovici and A. Vancu, " Optical properties and electronic structure of amorphous Germanium," Physica status solid (b), vol. 15, no. 2, p. 627, 1966.
[61] P. Liu, P. Longo, A. ZaslaV-sky and D. Pacifici, "Optical bandgap of single- and multi-layered amorphous germanium ultra-thin films," Journal of Applied Physics, vol. 119, p. 014304, 2016.
[62] S. T. Chang, M. Tang, R.Y. He, W. C. Wang, Z. Pei, C. Y. Kung, " TCAD simulation of hydrogenated amorphous silicon-carbon/ microcrystalline-silicon/ hydrogenated amorphous silicon-germanium PIN solar cells," Thin Solid Films, vol. 518 p. S250, 2010.
[63] T. M. Donovan and W. E. Spicer, " Optical properties of amorphous Germanium Films," Physical Review B, vol. 2, no. 2, p. 397, 1970.
[64] J. Wales, G. J. Lovitt and R. A. Hill, " Optical properties of germanium films in the 1–5 μ range," Thin Solid Films, vol. 1, no. 2, p. 137, 1967.
[65] G. W. Mudd, S. A. Svatek, T. Ren, A. Patanè, O. MakaroV-sky, L. Eaves, P. H. Beton, Z. D. Kovalyuk, G. V. Lashkarev, Z. R. Kudrynskyi and A. I. Dmitriev, "Tuning the bandgap of exfoliated InSe nanosheets by quantum confinement," Advanced Materials, vol. 25, no. 40, p. 5714, 2013.
[66] G. W. Mudd, M. R. Molas, X. Chen, V. Zólyomi, K. Nogajewski, Z. R. Kudrynskyi, Z. D. Kovalyuk, G. Yusa, O. MakaroV-sky, L. Eaves, M. Potemski, V. I. Fal’ko and A. Patanè1, " The direct-to-indirect band gap crossover in two-dimensional van der Waals Indium Selenide crystals," Scientific Reports, vol. 6, Article number: 39619, 2016.
[67] O. Lang and C. Pettenkofer, " Thin film growth and band lineup of In2O3 on the layered semiconductor InSe," Journal of Applied Physics, vol. 86, no. 10, p. 5687, 1999.
[68] S. Shigetomia, " Electrical and optical properties of n- and p-InSe doped with Sn and As," Journal of Applied Physics, vol. 93, no. 4, p. 2301, 2003.
[69] J. Martfnez-Pastor, A. Segura and J. L. Valdes, " Electrical and photovoltaic properties of indium-tin-oxide/p-lnSe/Au solar cells," Journal of Applied Physics, vol. 62, no.4, p. 1477, 1987.
[70] Ch. Ferrer-Roca, A. Segura, M. V. Andre´s, J. Pellicer and V. Munoz, "Investigation of nitrogen-related acceptor centers in indium selenide by means of photoluminescence: Determination of the hole effective mass," Physical Review B, vol. 55, no. 11, p. 6981, 1997.
[71] E. Kress-Rogers, R. J. Nicholas, J. C. Portal and A. Chevy, "Cyclotron resonance studies on bulk and two-dimensional conduction electrons in InSe," Solid State Communications, vol. 44, no. 3, p. 379, 1982.
[72] B. Čelustka, A. Peršin and D. Bidjin, " Refractive index of thin monocrystal films of InSe," Journal of Applied Physics, vol. 41, no. 2, p. 813, 1970.
[73] M. Brotons-Gisbert, J. F. Sánchez-Royo, J. P. Martínez-Pastor, "Thickness identification of atomically thin InSe nanoflakes on SiO2/Si substrates by optical contrast analysis," Applied Surface Science, vol. 354, p. 453, 2015.
[74] A. Segura, J. P. Guesdon, J. M. Besson and A. Chevy, "Photoconductivity and photovoltaic effect in indium selenide," Journal of Applied Physics, vol. 54, no. 2, p. 876, 1983.
[75] A. F. Qasrawi, I. Gunal and C. Ercelebi, "Structural and electrical properties of Cd doped InSe thin films," Crystal Research and Technology, vol. 35, no. 9, p. 1077, 2000.
[76] S. Shigetomi, Y. Koga, S. Shigetomi and T. Ikari, "Electrical properties of Cd-doped p-InSe," Physica status solid (a), vol. 180, no. 1, p. K53, 1988.
[77] A. F. Qasrawi, T. S. Kayed and K. A. Elsayed, "Properties of Se/InSe Thin-Film Interface," Journal of Electronic Materials, vol. 45, no. 6, p. 2763, 2016.
[78] C. H. Ho, "Thickness-dependent carrier transport and optically enhanced transconductance gain in III-VI multilayer InSe," 2D Materials, vol. 3, no. 2, p. 025019, 2016
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code