Responsive image
博碩士論文 etd-0714117-135628 詳細資訊
Title page for etd-0714117-135628
論文名稱
Title
研發多壁奈米碳管混合三相乳化生質柴油對於柴油引擎節能效益與污染物排放減量之研究
Development of Multi-walled Carbon Nanotubes Mixed with Three-Phase Emulsified Biodiesel Fuels for Energy Efficiency and Reducing Engine Pollutants Emission
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
111
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-06-29
繳交日期
Date of Submission
2017-08-14
關鍵字
Keywords
奈米催化材、乳化柴油、乳化生質柴油、多環芳香烴、傳統污染物
Traditional pollutants, Polycyclic aromatic hydrocarbons, Emulsified diesel, Emulsified biodiesel fuel, Nanomaterial-based catalyst
統計
Statistics
本論文已被瀏覽 5769 次,被下載 45
The thesis/dissertation has been browsed 5769 times, has been downloaded 45 times.
中文摘要
本研究擬研發穩定乳化生質燃料,利用油品燃料不同條件下進行不同比例混合,並添加奈米碳材之多壁奈米碳管均勻分散到乳化混合燃料中,使純水等添加物在進入引擎汽缸前乳化形成微小油滴。由於奈米粒子擁有高表面活性之優勢,可提高引擎燃燒效率,有效減少燃燒不完全與引擎油路堵塞引擎熄火情形,以及降低傳統污染物(NOx、PM2.5、CO)和多環芳香烴(PAHs)毒性污染氣體排放。實驗結果顯示,多壁奈米碳管之最佳條件為反應溫度 700℃、氫氣/乙烯 1:1 混合,流速 60 ml/min 時可合成長度300~500 nm,表面積100~150 m2/g之多壁奈米碳管。而三相乳化最佳條件以轉速 2800 rpm、溫度 50℃、HLB 值為 7.2 (Span:Tween:3:1) ,可以製成粒徑300~560 nm 三相乳化生質柴油,且靜置 30 天穩定性良好。而多壁奈米碳管添加量和削減率成正相關,添加多壁奈米碳管濃度越高,更能有效減少污染排放。當添加量為 100 mg/L 時,與無添加奈米碳管相比,不同混合燃料之BTE 可平均可上升 16.1~17.8%,而 BSFC 減少20.1~25.5%。傳統污染物部分CO、NOx、PM2.5、Total- PAHs及Total-BaPeq削減率分別為20.9~37.3%、19.9~24.5%、30.1~35.6%、33.5~49.9% 及 28.9~41.1%。
Abstract
The objective of this study was to prepare Multi Wall Carbon Nano Tube (MWCNT) by using the chemical vapor deposition (CVD), which was also synthesizing a novel hybrid nano carbon materials to be an additive, in order to decrease pollutants emissions such as nitrogen oxide (NOx), carbon monoxide (CO), particle matter (PM2.5) and polycyclic aromatic hydrocarbons (PAHs). The experiment was operated using hydrogen to ethylene volumn ratio of 1at a rate of 60 mL/min and a reaction temperature of 700℃, could be successfully prepared MWCNTs within the length range of 300~500nm and the specific surface area more than 100~150 m2/g. Otherwise, the perated condition of three-phase emulsification were prepared by the rotation speed of 2800 rpm, reaction temperature of 50℃ and the value of HLB was 7.2. Using surfacetant in the blend at the ratio of 3 could be magnificently produced the size range with in 300~560 nm of three-phase emulsification biodiesel. The emulsification biodiesel could stable for 30 days without separated. Compared to the pure biodiesel, the addition of multi-walled carbon nanotubes was positively correlated with the increase addition of multi-walled carbon nanotubes, which was more effective in reducing the pollution emission. The reduction rates of CO, NOx, PM2.5 ,Total- PAHs and Total-BaPeq in traditional pollutants were 20.9~37.3%, 19.9~24.5%, 30.1~35.6%, 33.5~49.9% and 28.9~41.1%.
目次 Table of Contents
學術論文審定書 i
論文公開授權書 ii
致謝 iii
摘要 iv
ABSTRACT v
目錄 vi
圖目次 ix
表目次 xii
第一章 前 言 1
1-1研究緣起 1
1-2 研究目的 2
第二章 文獻探討 3
2-1國際生質能源現況 3
2-2生質能源介紹 4
2-2-1生質能源 4
2-2-2生質柴油 5
2-2-3生質柴油之特性 10
2-2-4生質燃料之應用與發展趨勢 13
2-3奈米科技環境應用 13
2-4奈米碳管簡介 14
2-5乳化技術介紹 16
2-5-1乳化技術 16
2-5-2乳化劑 18
2-5-3乳化油穩定度 19
2-5-4乳化油之各組成特性及比例 20
2-5-5微米級乳化油 22
2-6柴油引擎 22
2-6-1生質柴油於引擎運轉下污染物之排放特徵 22
2-6-2乳化燃料於引擎運轉下污染物之排放特徵 23
2-6-3多環芳香烴之形成機制 24
2-6-4多環芳香烴之排放特徵 28
第三章 研究方法 30
3-1 研究流程與原因 30
3-2 多壁奈米碳管製備材料與方法 31
3-3 三重乳化製備方法 34
3-4 柴油引擎發電機 34
3-5柴油引擎排氣採樣系統 36
3-5-1傳統污染物採樣方法 36
3-5-2 懸浮微粒採樣與分析 36
3-5-3多環芳香烴(PAHs)採樣 37
3-5-3-1 PAHs採樣步驟 37
3-5-3-2 PAHs分析系統 40
3-5-3-3氣相質譜儀(GC/MS)之分析 42
3-6 不同混合油品 42
3-7 貴重儀器之配合使用情形 45
第四章 研究成果 48
4-1多壁奈米碳管最佳合成溫度探討 48
4-1-1場發射掃描式顯微鏡(F-ESEM)分析 48
4-1-2穿透式電子顯微鏡(TEM)分析 50
4-2多壁奈米碳管分析 54
4-2-1拉曼光譜儀(Raman)分析 54
4-2-2比表面積(BET)分析 55
4-2-3元素分析儀(EA)分析 55
4-2-4能量散射光譜儀(EDS)分析 56
4-3三重相乳化油性質分析 57
4-3-1界面活性劑添加比例 57
4-3-2粒徑分析 58
4-3-3電子顯微鏡分析 59
4-4 添加多壁奈米碳管燃料於引擎性能與排放特性影響 62
4-4-1制動熱效率 62
4-4-2制動單位燃料消耗率 64
4-4-2一氧化碳(CO)之排放特徵 66
4-4-3氮氧化物(NOx)之排放特徵 68
4-4-4懸浮微粒(PM2.5)之排放特徵 69
4-4-5多環芳香烴之排放特徵 71
4-4-5-1 LM-PAHs、MM-PAHs、HM-PAHs與Total-PAHs探討 71
4-4-5-2 Total-BaPeq探討 77
4-5成本與能源效益評估 85
4-5-1成本推估 85
4-5-2能源效益評估 85
第五章 結論與建議 87
5-1結論 87
5-2建議 88
第六章 參考文獻 89
參考文獻 References
Abbas S, Hayat K, Karangwa E, Bashari M, Zhang XM. An overview of ultrasound-assisted food-grade nanoemulsions. Food Engineering Reviews, 2013, 5, 139–157.
Ahmed IES, Ali KAR, Mahmoud B, Ookawara, The Influence of Multi-Walled Carbon Nanotubes Additives into Non-Edible Biodiesel-Diesel Fuel Blend on Diesel Engine Performance and Emissions. Energy Procedia, 2016, 100, 166-172.
Ajay K, Sumeet S. Role of Emulsion and Nanotechnology in Alternative Fuel for Compression Ignition Engine: Review. International Journal of Current Engineering and Technology, 2014, 4, 2892–97.
Ali Y, Hanna MA. Alternative diesel fuels form vegetable oils. Bioresource technology Abbreviation , 1994, 50, 153–163.
Altin RS, Cetinkaya HS. The potential of using vegetable oil fuels as fuel for diesel engines, Energy Conversion and Management, 2001, 42, 529–539.
Altmetric S., Prathima A. Emission analysis of the effect of doped nano-additives on biofuel in a diesel engine, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2016, 38, 3702-3708.
Antizar LB, Turrion GJL. Second‐generation biofuels and local bioenergy systems Biofuels, Biofuels, Bioproducts and Biorefining, 2008, 2, 455–469.
Arul MSV, Anand RB, Udayakumar M. Effects of cerium oxide nanoparticle addition in diesel and diesel biodiesel-ethanol blends on the performance and emission characteristics of a CI engine. Journal of Engineering and Applied Sciences, 2009, 4, 1–4.
Azad AK, Rasul MG, Khan MMK, Ahasan T, Ahmed SF. Energy scenario: production, consumption and prospect of renewable energy in Australia. Journal of Power and Energy Engineering, 2014, 2, 19–25.
Azad AK, Uddin SMA. Performance study of a diesel engine by first generation bio-fuel blends with fossil fuel: an experimental study. Journal of Renewable and Sustainable Energy, 2013, 5, 1–12.
Balat M. Potential alternatives to edible oils for biodiesel production – A review of current work. Energy Conversion and Management, 2011, 52, 1479–1492.
Ban WGA, Chen JY, Buchholz BA, Dibble RW. A numerical investigation into the anomalous slight NOx increase when burning biodiesel; a new (old) theory. Fuel Process Technology, 2007, 88, 659–667.
Basha JS, Anand RB. An experimental investigation in a diesel engine using carbon nanotubes blended water-diesel emulsion fuel. Power Energy, 2011, 225, 279-288.
Basha JS, Anand, RB. Performance. Emission and combustion characteristics of a diesel engine using Carbon Nanotubes blended Jatropha Methyl Ester Emulsions, Alexandria Engineering Journal, 2014, 53, 2, 259-273.
Bostrom CE, Gerde P, Hanberg A, Jernstrom B, Johansson C, Kyrklund T, Rannug A, Tornqvist M, Victorin K, Westerholm R. Cancer Risk Assessment, Indicators, and Guidelines for Polycyclic Aromatic Hydrocarbons in the Ambient Air. Environmental Health Perspectives, 2002, 110, 451–488.
Calvin HL. Experimental study of nanoadditives for biofuel combustion improvement. In: Proceedings of the ASME 2011 international mechanical engineering congress & exposition, 2011.
Canakci M, Combustion characteristics of a turbocharged DI compression ignition engine fueled with petroleum diesel fuels and biodiesel. Bioresource Technology, 2007, 98, 1167–1175.
Carraretto C, Macor A, Mirandola A, Stoppato A, Tonon S. Biodesel as alternative fuel : experimental analysis and energetic evaluations. Energy, 2004, 29, 2195-2211.
Chen KS, Lin YC, Hsieh LT, Lin LF, Wud CC. Saving energy and reducing pollution by use of emulsified palm-biodiesel blends with bio-solution additive. Energy, 2010, 35, 2043–48.
Cherubini F, Bird ND, Cowie A, Jungmeier G, Schlamadinger BS. Woess-Gallasch Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: key issues, ranges and recommendations. Resources Conservation and Recycling, 2009, 53, 434–447.
Chiang TA, Wu PF, Wang LF, Lee H, Lee CH, Ko YC. Mutagenicity and polycyclic aromatic hydrocarbon content of fumes from heatedcooking oils produced in Taiwan. Mutation Research, 1997, 38, 157–161.
Chlopek Z, Darkowski A, Piaseczny L. The influence of metallo-organic fuel additives on CI engine emission. Polish Journal of Environmental Studies. 2005, 14, 559–67.
Debnath BK, Saha UK, Sahoo N. An Experimental Way of Assessing the Application Potential of Emulsified Palm Biodiesel Toward Alternative to Diesel. Journal of Engineering for Gas Turbines and Power, 2013, 136, 021401–021412
Demirbas A. Biodiesel Production from Vegetable Oils via Catalytic and Non-catalytic Supercritical Methanol Transesterification Methods. Progress in Energy and Combustion Science, 2005, 31, 466–487.
Demirbas A. Recent developments in biodiesel fuels. International Journal of Green Energy , 2007, 4, 15–26.
Dorado MP, Ballesteros E, Arnal JM, Gomez J, Lopez FJ. Exhaust emission from a Diesel engine with transesterified waste olive oil. Fuel, 2003, 82, 1311–15.
Dresselhaus MS, Dresselhaus G, Eklund PC. Fullerenes and Carbon Nanotubes, Academic, San Diego, 1996.
Ebna AFM, Yang WM, Lee PS, Chou SK, Christopher RY. Experimental investigation of the performance and emission characteristics of direct injection diesel engine by water emulsion diesel under varying engine load condition. Applied Energy, 2013, 102, 1042–1049.
Eisner MD, Anthonisen N, Coultas D, Kuenzli N, Perez-Padilla R, Postma D, Romieu I, Silverman EK, Balmes JR. An official American Thoracic Society public policy statement: Novel risk factors and the global burden of chronic obstructive pulmonary disease. American journal of respiratory and critical care medicine, 2010, 182, 693–718.
Ekrem B. Effects of biodiesel on a DI diesel engine performance, emission and combustion characteristics. Fuel, 2010, 89, 3099–105.
Encinar JM, Gonalez JF, Rodriguez JJ, Tejedor A. Biodiesel Fuels from vegetable oils: Transesterification of Cynara cardunculus L. Oils with Ethanol. Energy and Fuels, 2002, 16, 443–450.
Fang GC, Wu YS, Chang CN, Ho TT. Retracted: A study of polycyclic aromatic hydrocarbons concentrations and source identifications by methods of diagnostic ratio and principal component analysis at Taichung chemical Harbor near Taiwan Strait. Chemosphere. 2006. 64, 1233-1242.
Gad SC, Gad SE. Polycyclic Aromatic Hydrocarbons (PAHs). Reference Module in Biomedical Sciences, 2014, 1040-1042.
Gulino G, Vieira R, Amadou J, Nguyen P, Ledoux MJ, Galvagno S, Centi G, Huu CP. C2H6 as an active carbon source for a large scale synthesis of carbon nanotubes by chemical vapour deposition. Applied Catalysis A: General, 2005, 279, 89-97.
Guru M, Karakaya U, Altiparmak D, Alicilar A. Improvement of diesel fuel properties by using additives. Energy Conversion and Management, 2002, 43, 1021–5.
Hagos FY, Rashid A, Aziz A, Tan IM. Water-in-diesel Emulsion and its Micro-explosion Phenomenon-review. Communication Software and Networks (ICCSN), IEEE 3rd International Conference, 2011, 314–318.
Heywood JB. Internal Combustion Engine Fundamentals. McGraw-Hill Book Company. 1988.
Jung H, Kittelson DB, Zachariah MR. The influence of a cerium additive on ultrafine diesel particulate emissions and kinetics of oxidation. Combustion and Flame, 2005, 142, 276–8.
Kalligeros S, Zannikos F, Strournas S, Lois E, Anastopoulos G, Teas CH, Sakellarppoulos F. An investigation of using biodiesel/matine diesel blends on the performance of a stationary diesel engine. Biomass and Bioenergy, 2003, 24, 141–149.
Khan MY, Abdul ZA, Karim Hagos FY, Rashid A, Aziz A, Tan IM. Current Trends in Water-in-Diesel Emulsion as a Fuel, The scientific world journal, 2014, 1–15.
Khond VW, Kriplani VM. Effect of nanofluid additives on performances and emissions of emulsified diesel and biodiesel fueled stationary CI engine: A comprehensive review. Renewable and Sustainable Energy Reviews, 2016, 59, 1338-1348.
Legreid G, Reimann S, Steinbacher M, Staehelin J, Young D, Stemmler K. Measurements of VOCs and NMHCs in a Swiss highway tunnel for estimation of road transport emissions. Environmental Science & Technology, 2007, 41, 7060–7066.
Lin YC, Hsu KH, Chen CB. Experimental investigation of the performance and emissions of a heavy-duty diesel engine fueled with waste cooking oil biodiesel/ultra-low sulfur diesel blends. Energy, 2011a, 36, 241–248.
Lin YC, Lee WJ, Chao HR, Wang SL, Tsou TC, Chang-Chien GP. Approach for energy saving and pollution reducing by fueling diesel engines with emulsified biosolution/biodiesel/diesel blend. Environmental Science & Technology, 2008, 42, 3849–3855.
Lin YC, Liu SH, Chen YM, Wu TY. A new alternative paraffinic-palmbiodiesel fuel for reducing polychlorinated dibenzo-p-dioxin/dibenzofuran emissions from heavy-duty diesel engines. Journal of Hazardous Materials, 2011b, 185, 1–7.
Liu SH, Lin YC, Hsu KH. Emissions of Regulated Pollutants and PAHs from Waste-cooking-oil Biodiesel-fuelled Heavy-duty Diesel Engine with Catalyzer. Aerosol and Air Quality Research, 2012, 12, 218–227.
Liu Y, Jiao W, Qi G. 2011. Preparation and properties of methanol-diesel oil emulsified fuel under high-gravity environment. Renewable Energy 36, 1463–1468.
Lodovic M, Dolara P, Casalini C, Ciappellano S. Polycyclic Aromatic Hydrocarbon Contamination in the Italian Diet. Food Additives & Contaminants, 1995, 12, 703-713
Lotero E, Liu Y, Lopez E, Lopez, Suwannakarn K, Bruce DA, Goodwin JG, synthesis of biodiesel via acid atalysis. Journal of Industrial & Engineering Chemistry, 2005, 44, 5353-5363.
Lu D., Rhodes, D., 2000, Mixed Composition Films of Spans and Tween 80 at the Air−Water Interface, Langmuir, 26, 8107-8112.
Lund H. Renewable energy strategies for sustainable development. Energy, 2007, 32, 912–919.
Maiboom A, Tauzia X. NOx and PM emissions reduction on an automotive HSDI Diesel engine with water-in-diesel emulsion and EGR: An experimental study. Fuel, 2011, 90, 3179–3192.
Martinot E, Dienst C, Weiliang L, Qimin C. Renewable energy futures: targets, scenarios, and pathways. Annual Review of Environment and Resources, 2007, 32, 205–239.
Mirzajanzadeha, M, Tabatabaeib, M, Ardjmanda, M, Rashidib, A, Ghobadianb, B, Barkhib, M, Pazoukig, M , A novel soluble nano-catalysts in diesel–biodiesel fuel blends to improve diesel engines performance and reduce exhaust emissions, Fuel, , 2015, 139, 374–382.
Miyamoto N, Zhixin H, Harada A, Ogawa H, Murayama T. Characteristics of diesel soot suppression with soluble fuel additives. SAE technical paper, 1987, 1–7.
Mohammadi P, Nikbakht AM, Tabatabaei M, Farhadi K, Mohebbi A. Experimental investigation of performance and emission characteristics of DI diesel engine fueled with polymer waste dissolved in biodiesel-blended diesel fuel. Energy, 2012, 46, 596–605.
Monthioux M, Serp P, Flahaut E, Razafinimanana M, Laurent C, Peigney A, Bacsa W, Broto JM. Introduction to Carbon Nanotubes. 2007. Springer Handbook of Nanotechnology, 43-112.
Morais LD, Grummt T, Palma OD, Sehr A, Renz S, Reinel S, Ferraz ER, Rodrigues D, Marchi M, Machado M, Zocolo GJ, Marin-Morales MA. Genotoxicity assessment of water soluble fractions of biodiesel and its diesel blends using the Salmonella assay and the in vitro MicroFlow(R) kit (Litron) assay. Chemosphere, 2012, 86, 512–520.
Moy D, Niu C, Tennent H. Carbon nanotubes in fuels.United States Patent, 2002.
Msangi S, Sulser T, Rosegrant M, Valmonte-Santos R, Ringler C. Global scenarios for biofuels: impacts and implications. The International Food Policy Research Institute, 2006 , 1–20.
Mura E, Massoli P, Josset C, Loubar K, Bellettre J. Study of the micro-explosion temperature of waterin oil emulsion droplets during the Leidenfrost effect. Experimental Thermal and Fluid Science, 2012 43, 63–70.
Nadeem M, Rangkuti C, Anuar K, Haq M, Tan IB, Shah S. Diesel engine performance and emission evaluation using emulsified fuels stabilized by conventional and gemini surfactants. Fuel, 2006, 85, 2111–2119.
National Biodiesel Board, 2006, http://www.biodiesel.org.
Palash S.M., Kalam M.A., Masjuki H.H., Masum B.M., Rizwanul Fattah I.M., Mofijur M. Impacts of biodiesel combustion on NOx emissions and their reduction approaches. Renewable and Sustainable Energy Reviews, 2013, 23, 473-490.
Qi DH, Chen H, Lee CF, Geng LM, Bian YZ. Experimental studies of a naturally aspirated, DI diesel engine fuelled with ethanol-biodiesel-water micro-emulsions. Energy Fuels, 2009, 24, 652–663.
Qi DH, Chen H, Matthews RD, Bian Y. Combustion and emission characteristics of ethanol-biodiesel-water micro-emulsions used in a direct injection compression ignition engine. Fuel, 2010, 89, 958–964.
Quick GR, Woodmore PJ, Wilson BT. Engine evaluation of linseed oil and derivatives. In: Bagby, M. O.; Pryde, E. H.(Eds.) Vegetable Oils Diesel Fuel: Seminar Ⅲ, ARM-NC-28, US Department of Agriculture: Peoria. 1983, 138.
Rakopoulos DC, Rakopoulos CD, Kakaras EC, Giakoumis EG. Effect of ethanol-diesel fuel blends on the performance and exhaust emission of heavy duty DI diesel engine. Energy Conversion and Management, 2008, 49, 3155–3162.
Reham SS, Masjuki HH, Kalam MA, Shancita I, Rizwanul Fattah IM, Ruhul AM. Renewable and Sustainable Energy Reviews, 2015, 52, 1566-1579.
Roger S. 2006. Cerium Oxide Nanoparticles as fuel additives. United States.
Rosegrant MW, Zhu T, Msangi S, Sulser T. Global scenarios for biofuels: impacts and implications. Applied Economic Perspectives and Policy, 2008, 30, 495–505.
Sadhik BJ, Anand RB. Effects of nanoparticle additive in the water-diesel emulsion fuel on the performance, emission and combustion characteristics of a diesel engine. International Journal of Global Warming, 2010, 34, 1-34.
Sadhik BJ, Anand RB. The influence of nano additive blended biodiesel fuels on the working characteristics of a diesel engine. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2013, 35, 257–64.
Sadhik BJ. Impact of Carbon Nanotubes and Di-Ethyl Ether as additices with biodiesl emulsion fuels in a diesel engine – An experimental investigation. Journal of the Energy Institute, 2016, 1-15.
Sajith V, Sobhan CB, Peterson GP. Experimental investigations on the effects of cerium oxide nanoparticle fuel additives on biodiesel. Advances in Mechanical Engineering 2010, 1–6.
Sara SK, Alimorad R, Hamid RA, Leila M. Increasing the octane number of gasoline using functionalized carbon nanotubes. Applied Surface Science, 2010, 256, 3472–3477.
Schalbart P, Kawaji M. Comparison of paraffin nanoemulsions prepared by low-energy emulsification 25 method for latent heat storage. International Journal of Thermal Sciences, 2013, 67, 113–119.
Schramm J, Sigvardsen R, Forman M. Bitumen/water emulsions as fuels for high-speed CI engines preliminary investigations. SAE Technical Paper 2003, 1-3143.
Schumacher LG, Borglet SC, Fosseen D, Goetz W, Hires WG. Heavy-Duty Engine Exhaust Emission Test Using Methyl Ester Soybean Oil/Diesel Fuel Blends. Bioresource Technology. 1996, 57, 31–36.
Selvan AM, Anand RB, Udayakumar M. Effects of cerium oxide nanoparticle addition in diesel and diesel-biodiesel-ethanol blends on the performance and emission characteristics of a CI engine. ARPN Journal of Engineering and Applied Sciences, 2009, 4, 1-6.
Singh NK. Experimental Investigations of Diesel Emulsions as Fuel in Small Direct Injection Compression Ignition Engines. MIT international Journal of Mechanical Engineering. 2012, 2, 39–44.
Srivastava DK, Agarwal AK, Gupta T. Effect of Engine Load on Size and Number Distribution of Particulate Matter Emitted from a Direct Injection Compression Ignition Engine. Aerosol Air Qual Res, 2011, 7, 915–920.
Subramanian KA. A comparison of water-diesel emulsion and time injection of water into the intake manifold of a diesel engine for simultaneous control of NOand smoke emissions. Energy Connversion and Managementm, 2011, 52, 849–857.
Subramanian R, Nandini KE, Sheila PM, Gopalakrishna AG, Raghavarao KSMS, Nakajima MT, Kimura T. Membrane processing of used frying oils, Journal of America Oil Chemist’s Society, 2000, 77, 323–328.
Tewari P, Doijode E, Banapurmath NR, Yaliwa VS. Experimental investigations on a diesel engine fuelled with multi-walled carbon nanotubes blended biodiesel fuels. International Journal of Energy and Power Engineering, 2013, 3, 72–6.
Tsai JH, Chen SJ, Huang KL, Lin YC, Lee WJ, Lin CC. PM Carbon and PAH emissions from a diesel generator fuelled with soy-biodiesel blends. Journal of Hazardous Materials, 2010, 179, 237–243.
University of Idaho (Department of Biological and Agricultural Engineering). Acute toxicity of biodiesel to freshwater and marine organisms Development of rapeseed biodiesel for use in high-speed diesel engines, Progress Report, 1996, 117–131.
Vicente G, Coteron A, Martinez J, Aracil M. Application of the factorial design of experiments and response surface methodology to optimize biodiesel production. Industrial Crops and Products, 1998, 8, 29–35.
Wickham DT, Cook R, De VS, Engel JR, Nabity J. Soluble nano-catalyst for high performance flues. Journal Of Russian Laser Research, 2006, 27, 258–68.
Williams C.L., Dahiya A., Porter P. Chapter 1 – Introduction to Bioenergy, Bioenergy, 2015, 5-36.
Wilson WE, Suh HH. Fine Particles and Coarse Particles: Concentration Relationships Relevant to Epidemiologic Studies. Journal of the Air & Waste Management Association. Assoc, 1997, 47, 1238-1249.
Yilmaz E, Solmaz H, Polat S, Uyumaz A, Sahin F, Salman MS. Preparation of diesel emulsion using auxiliary emulsifier mono ethylene glycol and utilization in a turbocharged diesel engine. Energy Conversion and Management. 2014. 86, 973–980.
王國華,2001,“多重相乳化性質及其引擎特性研究”,國立臺灣海洋大學航運技術研究所,碩士論文。
台灣儀器網,2015,http://chemicaldictionary.blogspot.tw/2015/07/ruthenium-ru.html。
行政院勞工委員會,2005,“火災爆炸”,安全衛生專業人員訓練教材研究與北區推廣中心設置計畫第三年。
吳耿東、李宏台,2004,“再生能源:生質能源-化腐朽為能源”,工業技術研究院能源與資源研究所。
吳贊鐸,1990,“柴油車空氣污染學”,淑馨出版社。
呂宗昕、吳偉宏,“奈米科技與二氧化鈦光觸媒”,臺灣大學化學工程系,科技大觀園,https://scitechvista.nat.gov.tw/c/5OZW.htm。
李宗育,“利用廢棄沙拉油製造生質柴油之研究”,高苑科技大學高分子環保材料,2005,碩士論文。
李雨霖,2010,“鉻金屬催化化學沉積法製備奈米碳管”,國立中山大學化學系研究所,碩士論文。
李秋煌,2016,“新技術報導”,工業技術研究院材料與化工研究所,化工專欄,第63卷,第6期。
李美雪,2007,“多壁奈米碳管吸附揮發性有機氣體之現象與機制”,國立中興大學土壤環境科學系,碩士論文。
李興旺,2004,“石化柴油及添加生質柴油引擎排放多環芳香烴之特徵”,國立成功大學環境工程學系,碩士論文。
阮國棟,2005, 奈米科技與環境保護。
林鴻明,2002,“奈米碳管之合成技術”,大同大學材工程研究所,奈米材料合成技術報告。
泛科學,2012,“生質能源的液態利用方式:生質酒精與生質柴油”,環境生態專欄。
邱維彥,2007,“奈米碳管鍍上寬能隙材料及其場發射顯示器的應用”,大同大學光電工程研究所碩士論文。
施佳育,2013,“運用生質柴油及固定氫氧混合氣對於柴油引擎醛酮化合物排放特徵之研究”,國立中山大學環境工程研究所,碩士論文。
徐明璋,2001,“生質柴油的產製及其在柴油引擎上之可行性研究”,國立台灣大學生物產業機電工程學研究所,碩士論文。
財團法人中技社,2016,“浮動油價機制的關鍵報告”,專題報告,第二章,第二節。
張簡國平,2011,“仁武、大社、林園石化工業區之揮發性有機物、多環芳香烴化合物、多溴聯苯醚之總量管制策略與最佳可行控制技術”,100年度環保署/國科會空污防治科研合作計畫期末報告。
郭致廷,2011,“生質能源概論 (七) ─ 生質柴油”,生質能源趨勢。
陳介武,2000,生化柴油發展與趨勢,http://www.soybean.org.tw/tech6-3.htm。
陳奕宏,2007,“生質能概論”,國立高雄應用科技大學,綠色能源科技整合學程教材。
陳郁文,2003,“生活中的神燈-觸媒:奈米小紅娘”,中央大學化學工程與材料工程學系。
陳康興、林淵淙、林聖倫、林洸銓、李承偉,2011,“氫氣與汽柴油雙燃料混燒技術之研究:模式模擬與動力計實程測試”,102 年度「環保署/國科會空污防制科研合作計畫」期末報告。
曾君儒,2013,“什麼是「生質燃料」”,經濟部能源局能源小學堂。
黃靖雄,1991,“汽車排氣污染與控制全書”,正工出版社。
楊鈞鈞,2012,“寺廟拜香產生多環芳香烴暴露量估計與風險分析”,科技部補助大專學生參與專題研究計畫研究成果報告。
經濟部能源局,2013,“國際油價情勢分析年報”,經濟部能源局年報。
萬皓鵬,2014,“生質物–後化石世代的重要能源與工業原料”,工業技術研究院綠能與環境研究所,科技大觀園,https://scitechvista.nat.gov.tw/c/3pwQ.htm。
蔡宗惠,2010,“奈米碳材料之光電特性分析”,大同大學光電工程研究所,碩士論文。
蔣本基、張怡怡、江鴻龍,2003,“都會型氣膠(PM2.5)管制策略規劃”,期末報告,國立台灣大學環境工程研究所。
賴怡潔,2008,“熱處理技術應用於煉油工業廢觸媒資源化:多環芳香烴化合物控制之研究”,中原大學生物環境工程研究學系,桃園縣大學校院產業環保技術服務團環保簡訊。
韓世澤,葉競榮,姚品全,2007,“以常壓熱化學氣相沉積法由乙炔成長奈米碳管之研究”,大葉大學,科學與工程技術期刊,第三卷,第二期。
蘇美惠,2016,“從生質柴油推動政策探討我國生質能源裡產業發展瓶頸”,東華大學能源科技中心。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code