Responsive image
博碩士論文 etd-0714117-141504 詳細資訊
Title page for etd-0714117-141504
論文名稱
Title
具積體化氯化銀參考電極之可攜式微型氯離子感測晶片開發
Development of a Portable Micro Sensing Chip with Integrated AgCl Reference Electrode for Chlorine Ion Detection
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
85
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-27
繳交日期
Date of Submission
2017-08-14
關鍵字
Keywords
微機電系統技術、氯化鉀洋菜膠、微型氯離子感測器、延伸式閘極場效電晶體、微型參考電極
micro reference electrode, KCl-gel, micro chlorine ion sensor, micro electro mechanical systems
統計
Statistics
本論文已被瀏覽 5774 次,被下載 40
The thesis/dissertation has been browsed 5774 times, has been downloaded 40 times.
中文摘要
隨著半導體與微機電系統技術的進步,離子感測器已由傳統大型的離子選擇電極縮小成可積體化的離子感測場效電晶體與延伸式閘極場效電晶體,但量測溶液中的離子濃度時,仍須搭配一商用參考電極,整體體積仍顯龐大。為改善此缺點,本論文致力於將延伸式閘極場效電晶體與微型參考電極整合於同一晶片上,以開發一具積體化氯化銀參考電極之可攜式微型氯離子感測晶片。
本論文開發之可攜式微型氯離子感測晶片包含銀/氯化銀準參考電極、延伸式閘極場效電晶體與氯化鉀洋菜膠封裝晶片三部分。銀/氯化銀準參考電極是在矽晶片上沉積鈦/銀金屬薄膜,再利用電化學方式將銀氯化而形成氯化銀薄膜,進而完成準參考電極之製作;封裝晶片則設計有兩個不同尺寸之微矽蝕刻腔體結構,其中一個矽腔體用以填充氯化鉀洋菜膠以作為準參考電極之鹽橋,另一個矽腔體則提供導線與準參考電極之連接通道;延伸式閘極場效電晶體則以微機電系統技術設計製作,最後結合氯離子感測薄膜,即可完成具有高感測靈敏度、元件體積小與低製造成本之具積體化氯化銀參考電極之可攜式微型氯離子感測晶片,相關製程步驟共包含八道黃光微影製程及八道薄膜沉積。
本論文製作完成之具積體化氯化銀參考電極之可攜式微型氯離子感測晶片之尺寸為1 cm × 1.2 cm × 0.1 cm,延伸閘極感測區域之面積為0.8 mm × 0.8 mm。根據量測結果,微型參考電極之補償電位在30,000秒測試時間下呈現非常低且穩定之值(1.2 mV),俱有與商用參考電極一樣穩定的CV曲線。另一方面,在1×10-1 M ~ 1×10-4 M離子濃度範圍下,本論文所開發氯離子微感測器其感測靈敏度高達70 mV/dec,優於國際期刊論文之研究成果;且其感測線性度亦高達0.982,趨近於既有之國際水準。
Abstract
With the advance of semiconductor and micro-electromechanical systems (MEMS) technologies, ion sensors have been developed from the conventional ion selective electrodes (ISE) to the ion sensitive field effect transistor (ISFET) and extended gate field effect transistor (EGFET) that can be integrated. However, the dimension of the ion detection system is still large because of a commercial reference electrode. To improve this disadvantage, this thesis aims to develop a portable micro sensing chip with integrated AgCl reference electrode for chlorine ion detection.
The proposed potable micro chlorine ion sensing chip includes three parts: a Ti/Ag/AgCl electrode chip, a KCl-gel packaging chip and an EGFET-based chloride ion microsensor. Ti/Ag/AgCl electrode chip is fabricated by depositing Ti/Ag membranes on the silicon wafer and then chlorinating the silver membrane by using electrochemical method. KCl-gel packaging chip has two bulk micromachined silicon cavities, one is for filling potassium chloride agarose as a quasi-reference electrode salt bridge and another for external conductor connection. EGFET-based chloride ion microsensor is fabricated by utilizing MEMS technology with a chloride ion selective membrane coated on the extended gate sensing area. A high sensitivity, small size and low cost chloride ion microsensor is developed by integrating AgCl electrode chip, packaging chip and EGFET-based chloride ion microsensor. The total main processing steps of the proposed microsensor includes eight photolithography and eight thin-film deposition processes.
The chip size of the proposed portable micro sensing chip with integrated AgCl reference electrode for chlorine ion detection is 1 cm × 1.2 cm × 0.1 cm, and the sensing area is 0.8 mm × 0.8 mm. According to the measurement results, the Ag/Cl reference electrode has a very low and stable offset voltage (1.2 mV in 30,000 seconds). Furthermore, the CV curve of the Ag/Cl reference electrode is same with commercial reference electrode. As the chlorine ion concentration varies from 1×10-1 M to 1×10-4 M, a very high sensitivity (70 mV/dec) and sensing linearity (0.982) of the chlorine ion microsensor can be demonstrated.
目次 Table of Contents
論文審定書......................................................................................................................................i
誌謝................................................................................................................................................ii
摘要................................................................................................................................................iii
Abstract..........................................................................................................................................iv
目錄................................................................................................................................................vi
圖目錄............................................................................................................................................viii
表目錄.............................................................................................................................................xi
第一章 緒論....................................................................................................................................1
1.1 研究動機...................................................................................................................................1
1.2 文獻回顧...................................................................................................................................2
1.2.1 感測器種類............................................................................................................................2
1.2.2 參考電極介紹........................................................................................................................6
1.3 實驗方法及論文架構................................................................................................................7
第二章 原理介紹............................................................................................................................9
2.1 參考電極原理介紹...................................................................................................................9
2.1.1 電極反應...............................................................................................................................9
2.1.2 質量傳遞..............................................................................................................................10
2.1.3 循環伏安法...........................................................................................................................11
2.1.4 交流阻抗分析.......................................................................................................................13
2.2 延伸式閘極感測場效電晶體原理介紹.....................................................................................22
第三章 具積體化氯化銀參考電極之可攜式微型氯離子感測晶片設計與製作...............................26
3.1 微型準參考電極與延伸式閘極場效電晶體與氯化鉀洋菜膠元件............................................26
3.1.1 微型準參考電極與延伸式閘極場效電晶體元件結構與佈局設計.........................................26
3.1.2 微型準參考電極與延伸式閘極場效電晶體元件製程整合....................................................30
3.1.3 氯化鉀洋菜膠設計與製作....................................................................................................39
3.2 具積體化氯化銀參考電極之可攜式微型氯離子感測晶片.......................................................45
3.2.1 具積體化氯化銀參考電極之延伸式閘極場效電晶體晶片....................................................46
3.2.2 氯離子感測薄膜配製...........................................................................................................48
第四章 結果與討論.......................................................................................................................50
4.1 微型參考電極電化學分析.......................................................................................................50
4.1.1 電位穩定度與補償電位........................................................................................................50
4.1.2 交流阻抗分析.......................................................................................................................53
4.1.3 循環伏安曲線.......................................................................................................................54
4.2 延伸式閘極場效電晶體特性與分析.........................................................................................60
4.3 具積體化氯化銀參考電極之可攜式微型氯離子感測晶片特性量測與分析..............................61
4.3.1 感測靈敏度與線性度分析.....................................................................................................62
4.3.2 感測遲滯電壓分析................................................................................................................64
4.3.3 與傳統氯離子感測器之比較.................................................................................................66
第五章 結論與未來展望................................................................................................................67
5.1 結論.........................................................................................................................................67
5.2 未來展望.................................................................................................................................68
參考文獻........................................................................................................................................70
參考文獻 References
[1] 黃舜煦,檢驗醫學部臨床檢驗手冊,臺大醫院檢驗醫學部 (2016)。
[2] C. J. Lavie, E. F. Crocker, K. J. Key and T. G. Ferguson, “Marked hypochloremic metabolic alkalosis with severe compensatory hypoventilation,” South. Med. J. 79, 1296-1299 (1986).
[3] M. Cremer, Zeitschrift fur biologie, Urban & Schwarzenberg, German (1906).
[4] P. Bergveld, “Development of an ion-sensitive solid-state device for neurophysiological measurements,” IEEE Trans. Biomed. Eng. 17, 70-71 (1970).
[5] P. Bergveld, “Thirty years of ISFETOLOGY what happened in the past 30 years and what may happen in the next 30 years,” Sens. Actuators B: Chem. 88, 1-20 (2003).
[6] C. J. Jorquera, O. Jahir and B. Antoni, “ISFET based microsensors for environmental monitoring,” Sens. 10, 61-83 (2010).
[7] J. V. D. Spiegel, I. Lauks, P. Chan and D. Babic, “The extended gate chemical sensitive field effect transistor as multi-species microprobe,” Sens. Actuators B: Chem. 4, 291-298 (1983).
[8] M. J. Schoning and A. Poghossian, “Recent advances in biologically sensitive Field-effect Transistors,” Analyst. 127, 1137-1151 (2002).
[9] D. P. Brezinski, “Kinetic static and stirring errors of liquid junction reference electrodes,” Analyst. 108, 425-442 (1983).
[10] J. Chen, K. Iwama, K. J. Aoki and T. Nishiumi, “Self-dispersion of mercury droplets from saturated calomel electrodes into solutions,” Int. J. Electrochem. Sci. 8, 7394-7400 (2013).
[11] G. Eni, Silver/silver-chloride electrode, KTF-Split. Croatia (2017). Available online: http://glossary.periodni.com
[12] K. Shimada, M. Yano, K. Shibatani, Y. Komoto, M. Esashi and T. Matsuo, “Application of catheter-tip i.s.f.e.t. for continuous in-vivo measurement,” Med. Biol. Eng. Comput. 18, 741-745 (1980).
[13] R. L. Smith and D. C. Scott, “An integrated sensor for electrochemical measurements,” IEEE Trans. Biomed. Eng. 33, 83-90 (1986).
[14] I.-Y. Huang, R.-S. Huang and L.-H. Lo, “Improvement of integrated/Ag/AgCl thin-film electrodes by KCl-gel coating for ISFET applications,” Sens. Actuators B: Chem. 94, 53-64 (2003).
[15] M. W. Shinwari, D. Zhitomirsky, I. A. Deen, P. R. Selvaganapathy, M. J. Deen and D. Landheer, “Microfabricated reference electrodes and their biosensing applications,” Sens. 10, 1679-1715 (2010).
[16] 吳浩青、李永舫,電化學動力學,科技圖書 (2001)。
[17] 格里弟著,鮮祺振譯,電極動力學,徐氏基金會出版 (1996)。
[18] 高潁、鄔冰,電化學基礎,化學工業出版社 (2004)。
[19] F. Crespi, T. G. England and D. G. Trist, “Simultaneous, selective detection of catecholaminergic and indolaminergic signals using cyclic voltammetry with treated micro-sensor,” J. Neurosci. Methods. 61, 201-212 (1995).
[20] A. J. Bard and L. R. Faulkner, Electrochemical methods fundamentals and applications, John Wiley & Sons, Inc., New York, (2000).
[21] J. G. Webster, Electrical impedance tomography, Adam Hilger Ltd, UK, (1990).
[22] J. Garche, C. K. Dyer, P. T. Moseley, Z. Ogumi, D. A. J. Rand and B. Scrosati, Encyclopedia of electrochemical power sources, Elsevier, Netherlands (2013).
[23] A. Lewandowski, P. Jakobczyk, M. Galinski and M. Biegun, “Self-discharge of electrochemical double layer capacitors,” Phys. Chem. Chem. Phys. 15, 8692-8699 (2013).
[24] J. R. Macdonald and W. R. Kenan, Impedance spectroscopy - emphasizing solid materials and systems, John Wiley & Sons, Inc., New York, (1987).
[25] H. Helmholtz, “Studien über electrische grenzschichten,” Ann. Phys.243, 337-382 (1879).
[26] M. Gouy, “Sur la constitution de la charge ́electrique `a la surface d’un ́electrolyte,” J. Phys. 9, 457-468 (1910).
[27] D. L. Chapman, “A contribution to the theory of electrocapillarity,” Philos. Mag. 6, 475-481 (1913).
[28] O. Stern, “Zur theorie der elektrolytischen doppelschicht,” Z. Electrochem. 30, 508-516 (1924).
[29] L. L. Zhang and X. S. Zhao, “Carbon-based materials as supercapacitor electrodes,” Chem. Soc. Rev. 38, 2520-2531 (2009).
[30] D. E. Yates, S. Levine and T. W. Healy, “Site-binding mode of the electrical double layer at the oxide/water interface,” J. Chem. Soc. Faraday Trans. 70, 1807-1818 (1974).
[31] I.-Y. Huang and R.-S. Huang, “Fabrication and characterization of a new planar solid-state reference electrode for ISFET sensors,” Thin Solid Films 406, 255-261 (2002).
[32] I.-Y. Huang, C.-H. Hsieh and C.-C. Chu, “Study on wafer-level packaging and electrochemical characterization of planar AgCl micro reference electrode,” in Proc. IEEE 3rd Int. Conf. on Nano/Molecular Medicine and Engineering, pp. 18-21, Tainan, Taiwan (2009).
[33] 邱見泰,微型氯化銀參考電極之封裝與電化學特性分析,中山大學電機工程學系碩士論文 (2004)。
[34] 朱吉植,平面式微型氯化銀參考電極之晶圓級封裝與電化學特性分析之研究
,中山大學電機工程學系碩士論文 (2008)。
[35] 洪偉哲,含積體化氯化銀參考電極之二氧化碳微型氣體感測器開發,中山大學電機工程學系碩士論文 (2013)。
[36] M. Lyczewska, M. Wojciechowski, E. Bulska, E. A. H. Hall, K. Maksymiuk and A. Michalska, “Chloride-selective electrodes with poly(n-butyl acrylate) based membranes,” Electroanalysis 19, 393-397 (2007).
[37] X. X. Li, M. Ju and X. W. Li, “Chlorine ion sensor based on polyaniline film electrode,” Sens. Actuators B: Chem. 97, 144-147 (2004).
[38] A. Bratov, N. Abramova and C. Domı́nguez, “Investigation of chloride sensitive ISFETs with different membrane compositions suitable for medical applications,” Anal. Chim. Acta. 514, 99-106 (2004).
[39] S.-I. Sasaki, T. Amano, G. Monma, T. Otsuka, N. Iwasawa, D. Citterio, H. Hisamoto and K. Suzuki, “Comparison of two molecular design strategies for the development of an ammonium ionophore more highly selective than nonactin,” Anal. Chem. 74, 4845-4848 (2002).
[40] J.-C. Chou, G.-C. Ye, D.-G. Wu and C.-C. Chen, “Fabrication of the array chlorine ion sensor based on microfluidic device framework,” Solid-State Electron. 77, 87-92 (2012).
[41] A. Crannya, N. R. Harrisa, M. Nieb, J. A. Whartonb, R. J. K. Woodb and K. R. Stokesc, “Screen-printed potentiometric Ag/AgCl chloride sensors: Lifetime performance and their use in soil salt measurements,” Sens. Actuators, A: Phys. 169, 288-294 (2011).
[42] V. A. T. Dam, M. A. G. Zevenbergen, R. V. Schaijk, “Flexible chloride sensor for sweat analysis,” Procedia Eng. 120, 237-240 (2015).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code