Responsive image
博碩士論文 etd-0714117-170512 詳細資訊
Title page for etd-0714117-170512
論文名稱
Title
菲律賓北部與台灣南部不同大氣汞污染物時空分佈與長程傳輸
Spatiotemporal Variation and Long-range Transport of Atmospheric Speciated Mercury in the Intersection of Northern Philippines and Southern Taiwan
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
144
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-06-05
繳交日期
Date of Submission
2017-08-21
關鍵字
Keywords
台灣南部及菲律賓北部、空間分佈、日夜及季節變化、氣固相分佈、傳輸路徑分類、不同型態大氣汞
Clustered transportation routes, Speciated atmospheric mercury, Diurnal and seasonal variation, Gas-solid partition, Spatial distribution
統計
Statistics
本論文已被瀏覽 5782 次,被下載 164
The thesis/dissertation has been browsed 5782 times, has been downloaded 164 times.
中文摘要
本研究針對菲律賓北部及台灣南部交界區域之大氣汞污染物,分別選擇菲律賓佬沃(呂宋島北部地區)、屏東車城(台灣南部地區)、東沙群島(南海北部地區)三處地點,分別設置大氣汞採樣站,同步進行大氣環境中氣態汞(TGM)、氣態氧化汞(GOM)及顆粒汞(PHg)的採樣及分析。藉以探討菲律賓北部及台灣南部交界區域的大氣汞污染物(TGM、GOM、PHg)濃度的日夜及季節變化、污染源解析及長程傳輸之影響。有鑒於台灣南部、菲律賓北部及南中國海北部相關大氣汞研究較少,故實有必要針對此區域進行大氣汞採樣及分析研究,本研究亦利用HYSPLIT Model繪製採樣期間空氣污染氣團之逆軌跡圖,藉以瞭解污染氣團之可能來源,並以全球火點圖與各空氣污染物相關性進行大氣汞污染解析。最後,將本研究結果與世界各主要城市與海島之大氣汞濃度加以比較。
就菲律賓北部及台灣南部交界區域的GEM、GOM及PHg的空間分佈而言,菲律賓佬沃測站的平均濃度為3.00±0.69 ng/m3、26.69±9.23 pg/m3、0.22±0.046 ng/m3;屏東車城測站的平均濃度為2.26±0.68 ng/m3、19.57±7.83 pg/m3、0.12±0.035 ng/m3;東沙群島測站的平均濃度為2.20±0.76 ng/m3、15.41±5.23 pg/m3、0.12±0.029 ng/m3。菲律賓佬沃測站GEM、GOM及PHg的平均濃度值皆為最高, GEM及PHg濃度最高值皆出現在菲律賓佬沃的春季,分別為3.58±0.28及0.30±0.080 ng/m3,GOM濃度最高值出現在菲律賓佬沃的夏季(28.91±9.21 pg/m3); GEM及PHg濃度最低值皆出現在東沙群島的夏季,分別為1.58±0.33 ng/m3及0.13±0.02 ng/m3, GOM濃度最低值出現在東沙群島的秋季(12.86±5.64 pg/m3)。
就不同型態汞的分佈而言,佬沃、車城及東沙群島大氣汞濃度皆以TGM為主要型態。就不同季節而言,TGM在TAM所佔比例為96.72%(夏季)、95.86%(秋季)、93.65%(冬季)、92.64%(春季),全年TGM佔TAM的比例為92.64~96.72%;PHg佔TAM的比例為3.28%(夏季)、4.14%(秋季)、6.35%(冬季)、7.36%(春季),全年PHg佔TAM的比例為3.28~7.36%。
由傳輸路徑彙整結果發現,污染氣團大多來自於中國華北、華中地區,然而發生頻率最低的中國華南及中南半島所量測GEM濃度值反而卻最高,其餘來自於太平洋、日本及韓國的GEM濃度值為最低。因此,可瞭解GEM長程傳輸之貢獻不容小覷及解析氣團所帶來之大氣汞污染,此三處背景站的大氣汞濃度,與歐美地區及大氣汞南、北半球背景值相比較高,但由於此三處皆無大型人為污染源,可能與境外傳輸或當地人為活動有關,因此對於大氣汞長程傳輸的影響實不容小覷。
Abstract
In this study, we investigated the spatiotemporal variation and source identification speciated atmospheric mercury in the intersectional region of southern Taiwan (Checheng), northern Philippines (Laoag), and northern South China Sea (Dongsha Islands). At each sampling site, total gaseous mercury (TGM), gaseous oxidized mercury (GOM), and particle-bound mercury (PHg) were sampled simultaneously to discuss the spatiotemporal distribution, diurnal variation, potential sources and long-range transport of speciated atmospheric mercury. This study further applied HYSPLIT model to plot and cluster the trajectories of air masses during the sampling periods to identify the potential sources of speciated atmospheric mercury. The correlation of speciated atmospheric mercury concentrations with global fire maps and transportation routes was also conducted. Finally, the speciated atmospheric mercury concentrations measured in this study were compared with those in the world's major cities and islands.
The average concentrations of GEM, GOM, and PHg were 2.76±0.36 ng/m3, 23.14±8.67 pg/m3, and 0.23±0.058 ng/m3 at the three background sites, respectively. The highest concentrations of GEM and PHg occurred at Laoag in spring, while the highest GOM concentrations was observed at Laoag in summer. The lowest concentrations of GEM and PHg were occurred at Dongsha Islands in summer, while the lowest GOM concentration was observed at Dongsha Islands in fall. Overall, TGM accounted for 92.64-96.72% of total atmospheric mercury (TAM), while PHg accounted for 3.28-7.36% of TAM.
Backward trajectory simulation showed that the polluted air masses came mainly from North China and Central China. However, South China and Indochina Peninsula with the lowest frequency had the highest concentration of GEM. On the other hand, polluted air masses transported from the western Pacific Ocean, Japan Islands, and Korean Peninsula had the lowest GEM concentration. This study revealed that the concentrations of speciated atmospheric mercury at the three background sites were generally higher than those in Europe and the United States, but lower than those in Asia except Japan. It might be attributed to long-range transport or local human activities since there are no large-scale anthropogenic sources in the target area.
目次 Table of Contents
論文審定書…………………………………………………………………………….i
論文公開授權書………………………………………………………..……………..ii
中文摘要……………………………………………………………………………...iii
英文摘要……………………………………………………………………………....v
目錄…………………………………………………………………………………..vii
表目錄………………………………………………………………………...……….x
圖目錄……………………………………………………………………………..….xi
第一章 前言………………………………………………………………………..…1
1.1 研究緣起………………………………………………………………...….1
1.2 研究目的……………………………………………………………...…….2
1.3 研究範圍與架構……………………………………………………………3
第二章 文獻回顧…………………………………………………………………..…5
2.1 汞之背景介紹…………………………………………………….…………5
2.1.1 汞的基本特性………………………………………………..…………5
2.1.2 大氣汞的型態及組成特徵…………………………………………..…8
2.1.3 大氣汞的生成機制及全球循環機制…………………………………11
2.2 汞的健康風險…………………………………….………………………..16
2.2.1 汞的毒理性質………………………………………...……………….16
2.2.2 汞的暴露危害標準………………………………...………………….19
2.3 大氣汞量測方法…………………………………………………………... 21
2.3.1 大氣汞量測技術演進………………………...…………………….…21
2.3.2 不同型態大氣汞採樣及分析方法……………………………..……..24
2.4 污染源解析模式之原理及應用…………………………………………...27
2.4.1 逆軌跡模式之基本原理………………………………………………27
2.4.2 逆軌跡模式之應用……………………………………………………29
2.5 國內外大氣汞相關研究…………………………………………………...31
第三章 研究方法……………………………………………………………………38
3.1 大氣汞採樣規劃...…………………………………………………………38
3.1.1 大氣汞採樣地點.…………………………………………….…..……38
3.1.2 大氣汞採樣時間….…………………………………….……..………38
3.2 大氣汞採樣方法.………………………..…………………………………40
3.2.1 TGM採樣方法.…………………………………………………..……40
3.2.2 GOM採樣方法.………………………………………………….….…44
3.2.3 PHg採樣方法……………………………………………………….…47
3.3 大氣汞分析方法.…………………………………………………………..49
3.3.1 TGM分析方法及步驟.………………………………………………..50
3.3.2 GOM分析方法及步驟.………………………………………………..52
3.3.3 PHg分析方法及步驟.…………………………………………………52
3.4 大氣汞採樣及分析之品保及品管(QA/QC) .……………………………..53
3.4.1人員資格……………………………………………………………….53
3.4.2品保及品管樣品……………………………………………………….53
3.5 冷蒸氣原子螢光光譜儀(Cold Vapor Atomic Fluorescence Spectrometry,
CVAFS)…………………………..……………………………..…………57
3.6 污染源解析方法.………………………………………………..…………58
3.6.1 逆軌跡模式.……………………………………………………...……58
3.6.2 全球火點分佈.……………………………………...…………………58
第四章 結果與討論.…………………………………………………………..…….60
4.1 菲律賓北部與台灣南部區域之氣象條件分析.…………………………..60
4.1.1 風速及風向.……………………………………………………...……60
4.1.2 氣溫、濕度及降雨量.…………...……………………………………66
4.2 GOM擴散管驗證與測試.…………………………………………….……68
4.2.1 GOM擴散管空白測試.……………………………………..…………68
4.2.2 GOM擴散管穿透率測試.……………………………………………..69
4.2.3 GOM擴散管平行比對測試.……………………………..……………70
4.3 金汞齊的驗證與測試.……………………………………………………..71
4.3.1 金汞齊空白測試.……………………………………...………………71
4.3.2 金汞齊穿透率測試…….………………………………………...……72
4.3.3 金汞齊日夜採樣測試…………………………………………………73
4.4菲律賓北部與台灣南部交界區域大氣汞時空分佈.……………………...75
4.4.1 菲律賓北部及台灣南部交界區域不同型態汞之季節變化趨勢……76
4.4.2 菲律賓北部及台灣南部區域不同型態大氣汞之空間分佈………....79
4.4.3 菲律賓北部及台灣南部區域氣固相分佈特徵………………...…….80
4.4.4 菲律賓北部及台灣南部交界區域不同季節TGM及PHg發生頻率分
佈.……………………………………………………………………...83
4.4.5 菲律賓北部及台灣南部交界區域高污染季節TGM日夜濃度比較.85
4.4.6 菲律賓北部及台灣南部區域春、冬高污染季節PHg與PM2.5
日夜濃度相關性比較……………………………………………..…..85
4.5菲律賓北部及台灣南部交界區域大氣汞污染來源解析.……………...…87
4.5.1 污染氣團傳輸路徑聚類分析…………………………………....……87
4.5.2 全球火點分佈監測.…………………………………...………………95
4.5.3 大氣汞濃度、氣象參數及空氣污染物之相關性分析..……………..97
4.6與世界各地大氣汞濃度比較.……………………………………………...99
第五章 結論與建議.…………………………………………………….……..…..103
5.1 結論.…………………………………………………….……………..….103
5.2 建議.……………………………………………………………….…..….105
參考文獻.…………………………………………………………………….……..106
附錄A 汞標準品體積與溫度關係表…………………...………………………...122
附錄B 不同型態大氣汞量測數據表……………………..………………………125
參考文獻 References
Albuquerque, M., Coutinho, M., Rodrigues, J., Ginja, J. & Borrego, C. 2017. Long-term monitoring of trace metals in PM10 and total gaseous mercury in the atmosphere of Porto, Portugal. Atmospheric Pollution Research, 8(3), 535-544.
Ames, M., Gullu, G. & Olmez, I., 1998. Atmospheric mercury in the vapor phase, and in fine and coarse particulate matter at Perch River, New York. Atmospheric Environment, 32(5), 865-872.
Barregård, L., Sällsten, G., Schütz, A., Attewell, R. & Järvholm, B., 1992. Kinetics of mercury in blood and urine after brief occupational exposure. Archives of Environmental Health: An International Journal, 47(3), 176-184.
Berg, T., Bartnicki, J., Munthe, J., Lattila, H., Hrehoruk, J. & Mazur, A., 2001. Atmospheric mercury species in the European Arctic: measurements and modelling. Atmospheric Environment, 35(14), 2569-2582.
Bothner, M. H. & Robertson, D. E., 1975. Mercury contamination of sea water samples stored in polyethylene containers. Analytical Chemistry, 47(3), 592-595.
Brooks, S., Luke, W., Cohen, M., Kelly, P., Lefer, B. & Rappenglück, B. 2010. Mercury species measured atop the Moody Tower TRAMP site, Houston, Texas. Atmospheric Environment, 44(33), 4045-4055.
Brown, R. J., Goddard, S. L., Butterfield, D. M., Brown, A. S., Robins, C., Mustoe, C. L. & McGhee, E. A. 2015. Ten years of mercury measurement at urban and industrial air quality monitoring stations in the UK. Atmospheric Environment, 109, 1-8.
Brown, T. D., Smith, D. N., Hargis Jr, R. A. & O'Dowd, W. J., 1999. Mercury measurement and its control: what we know, have learned, and need to further investigate. Journal of the Air & Waste Management Association, 49(6), 1-97.
Chan, C. C. & Sadana, R. S., 1993. Automated determination of mercury at ultra trace level in waters by gold amalgam preconcentration and cold vapour atomic fluorescence spectrometry. Analytica Chimica Acta, 282(1), 109-115.
Chand, D., Jaffe, D., Prestbo, E., Swartzendruber, P. C., Hafner, W., Weiss-Penzias, P., Kato, S., Takami, A. & Kajii, Y. 2008. Reactive and particulate mercury in the Asian marine boundary layer. Atmospheric Environment, 42(34), 7988-7996.
Chen, H., Wang, J., Chen, J., Lin, H. & Lin, C., 2016. Assessment of heavy metal contamination in the surface sediments: A reexamination into the offshore environment in China. Marine Pollution Bulletin, 113(1), 132-140.
Chen, X., Balasubramanian, R., Zhu, Q., Behera, S. N., Bo, D., Huang, X., Xie, H. & Cheng, J., 2016. Characteristics of atmospheric particulate mercury in size-fractionated particles during haze days in Shanghai. Atmospheric
Cheng, I., Zhang, L., Blanchard, P., Dalziel, J. & Tordon, R. 2013., Concentration-weighted trajectory approach to identifying potential sources of speciated atmospheric mercury at an urban coastal site in Nova Scotia, Canada. Atmospheric Chemistry and Physics, 13(12), 6031-6048.
Cheng, I., Zhang, L., Blanchard, P., Graydon, J. A. & St Louis, V. L., 2012., Source-receptor relationships for speciated atmospheric mercury at the remote Experimental Lakes Area, northwestern Ontario, Canada. Atmospheric Chemistry and Physics, 12(4), 1903-1922.
Cheng, I., Zhang, L., Mao, H., Blanchard, P., Tordon, R. & Dalziel, J., 2014. Seasonal and diurnal patterns of speciated atmospheric mercury at a coastal-rural and a coastal-urban site. Atmospheric Environment, 82, 193-205.
Cherian, M. G., Hursh, J. B., Clarkson, T. W. & Allen, J., 1978. Radioactive mercury distribution in biological fluids and excretion in human subjects after inhalation of mercury vapor. Archives of Environmental & Occupational Health, 33(3), 109-114.
Choi, H. D., Huang, J., Mondal, S. & Holsen, T. M., 2013. Variation in concentrations of three mercury (Hg) forms at a rural and a suburban site in New York State. Science of the Total Environment, 448, 96-106.
Cranmer, M., Gilbert, S. & Cranmer, J., 1996. Neurotoxicity of mercury--indicators and effects of low-level exposure: overview. Neurotoxicology, 17(1), 9-14.
Crinnion, W. J., 2000. Environmental medicine, part three: long-term effects of chronic low-dose mercury exposure. Alternative Medicine Review: A Journal of Clinical Therapeutic, 5(3), 209-223.
Crowe, W., Allsopp, P. J., Watson, G. E., Magee, P. J., Strain, J. J., Armstrong, D. J., Ball, E. & McSorley, E. M., 2017. Mercury as an environmental stimulus in the development of autoimmunity–A systematic review. Autoimmunity Reviews, 16(1), 72-80.
Díez, S., Montuori, P., Pagano, A., Sarnacchiaro, P., Bayona, J. M. & Triassi, M., 2008. Hair mercury levels in an urban population from southern Italy: fish consumption as a determinant of exposure. Environment International, 34(2), 162-167.
Dos Santos, A. A., Hort, M. A., Culbreth, M., López-Granero, C., Farina, M., Rocha, J. B. & Aschner, M., 2016. Methylmercury and brain development: A review of recent literature. Journal of Trace Elements in Medicine and Biology, 38, 99-107.
Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J. & Pirrone, N., 2013. Mercury as a global pollutant: sources, pathways, and effects. Environmental Science & Technology, 47(10), 4967-4983.
Duan, L., Wang, X., Wang, D., Duan, Y., Cheng, N. & Xiu, G., 2017. Atmospheric mercury speciation in Shanghai, China. Science of The Total Environment, 578, 460-468.
Dumarey, R., Heindryckx, R., Dams, R. & Hoste, J., 1979. Determination of volatile mercury compounds in air with the coleman mercury analyzer system. Analytica Chimica Acta, 107, 159-167.
Ebdon, L., Wilkinson, J. R. & Jackson, K. W., 1981. Determination of sub-nanogram amounts of mercury by cold-vapour atomic fluorescence spectrometry with an improved gas-sheathed atom cell. Analytica Chimica Acta, 128, 45-55.
Ebinghaus, R. & Kock, H. H., 1999. Factors affecting the measurement of mercury. Journal of Geophysical Research, 104(D17), 21-859.
Engle, M. A., Tate, M. T., Krabbenhoft, D. P., Kolker, A., Olson, M. L., Edgerton, E. S. & McPherson, A. K., 2008. Characterization and cycling of atmospheric mercury along the central US Gulf Coast. Applied Geochemistry, 23(3), 419-437.
Environment, 131, 400-408.
Esbrí, J. M., López-Berdonces, M. A., Fernández-Calderón, S., Higueras, P. & Díez, S. 2015. Atmospheric mercury pollution around a chlor-alkali plant in Flix (NE Spain): an integrated analysis. Environmental Science and Pollution Research, 22(7), 4842-4850.
Fang, F., Wang, Q. & Li, J., 2004. Urban environmental mercury in Changchun, a metropolitan city in Northeastern China: Source, cycle, and fate. Science of the Total Environment, 330(1), 159-170.
Fang, F., Wang, Q., Liu, R., Ma, Z. & Hao, Q., 2001. Atmospheric particulate mercury in Changchun city, China. Atmospheric Environment, 35(25), 4265-4272.
Fang, G. C., Wu, Y. S. & Chang, T. H., 2009. Comparison of atmospheric mercury (Hg) among Korea, Japan, China and Taiwan during 2000–2008. Journal of Hazardous Materials, 162(2), 607-615.
Feng, X.B., Sommar, J.G. and Gardfeldt, K., 2000. Improved detection of gaseous divalent mercury in ambient air using KCl coated denuders, Analytical and Bioanalytical Chemistry, 366, 423-428.
Fitzgerald, W. F. & Gill, G. A., 1979. Subnanogram determination of mercury by two-stage gold amalgamation and gas phase detection applied to atmospheric analysis. Analytical Chemistry, 51(11), 1714-1720.
Fu, X., Feng, X., Qiu, G., Shang, L. & Zhang, H., 2011. Speciated atmospheric mercury and its potential source in Guiyang, China. Atmospheric Environment, 45(25), 4205-4212.
Fu, X., Feng, X., Sommar, J. & Wang, S., 2012. A review of studies on atmospheric mercury in China. Science of the Total Environment, 421, 73-81.
Fu, X., Feng, X., Zhang, H., Yu, B. & Chen, L., 2012. Mercury emissions from natural surfaces highly impacted by human activities in Guangzhou province, South China. Atmospheric Environment, 54, 185-193.
Fu, X., Feng, X., Zhu, W., Wang, S. & Lu, J., 2008. Total gaseous mercury concentrations in ambient air in the eastern slope of Mt. Gongga, South-Eastern fringe of the Tibetan plateau, China. Atmospheric Environment, 42(5), 970-979.
Fu, X., Feng, X., Zhu, W., Zheng, W., Wang, S. & Lu, J. Y., 2008. Total particulate and reactive gaseous mercury in ambient air on the eastern slope of the Mt. Gongga area, China. Applied Geochemistry, 23(3), 408-418.
Fu, X.W., Zhang, H., Yu, B., Wang, X., Lin, C.J. & Feng, X.B., 2015. Observations of atmospheric mercury in China: A critical review. Atmospheric Chemistry and Physics, 15, 9455-9476.
Gabriel, M. C., Williamson, D. G., Brooks, S. & Lindberg, S., 2005. Atmospheric speciation of mercury in two contrasting Southeastern US airsheds. Atmospheric Environment, 39(27), 4947-4958.
Gauchard, P. A., Aspmo, K., Temme, C., Steffen, A., Ferrari, C., Berg, T., Strömg, J. & Magand, O., 2005. Study of the origin of atmospheric mercury depletion events recorded in Ny-Ålesund, Svalbard, spring 2003. Atmospheric Environment, 39(39), 7620-7632.
Governments Strike First Global Mercury Control Treaty, 2013
Gratz, L. E., Keeler, G. J., Marsik, F. J., Barres, J. A. & Dvonch, J. T., 2013. Atmospheric transport of speciated mercury across southern Lake Michigan: Influence from emission sources in the Chicago/Gary urban area. Science of the Total Environment, 448, 84-95.
Han, Y.J., Kim, J.E., Kim, P.R., Kim, W.J., Yi, S.M., Seo, Y.S. & Kim, S.H., 2014. General trends of atmospheric mercury concentrations in urban and rural areas in Korea and characteristics of high-concentration events. Atmospheric Environment, 94, 754-764.
Higueras, P.,Esbrí, J.M., Oyarzun, R., Llanos, W., Martínez-Coronado, A., Lillo, J. & García-Noguero, E.M., 2013. Industrial and natural sources of gaseous elemental mercury in the Almadén district (Spain): an updated report on this issue after the ceasing of mining and metallurgical activities in 2003 and major land reclamation works. Environmental Research, 125, 197-208.
Holmes, C. D., Jacob, D. J., Mason, R. P. & Jaffe, D. A., 2009. Sources and deposition of reactive gaseous mercury in the marine atmosphere. Atmospheric Environment, 43(14), 2278-2285.
Hong, Q., Xie, Z., Liu, C., Wang, F., Xie, P., Kang, H., Xu, J., Wang, J., Wu, F., He, P., Mou, F., Dong, Y., Zhan, H., Yu, X., Chi, X. & Liu, J., 2016. Speciated atmospheric mercury on haze and non-haze days in an inland city in China. Atmospheric Chemistry and Physics, 16(21), 13807-13821.
Hong, Y., Chen, J., Deng, J., Tong, L., Xu, L., Niu, Z., Yin, L ., Chen, Y. & Hong, Z., 2016. Pattern of atmospheric mercury speciation during episodes of elevated PM2.5 levels in a coastal city in the Yangtze River Delta, China. Environmental Pollution, 218, 259-268.
Hu, Q. H., Kang, H., Li, Z., Wang, Y. S., Ye, P. P., Zhang, L. L., Yu, J., Yu, X. W., Sun, C. & Xie, Z. Q., 2014. Characterization of atmospheric mercury at a suburban site of central China from wintertime to springtime. Atmospheric Pollution Research, 5(4), 769-778.
Huang, J., Liu, C.K., Huang, C.S. & Fang, G.C., 2012. Atmospheric mercury pollution at an urban site in central Taiwan: Mercury emission sources at ground level. Chemosphere, 87, 579-585.
Huang, R. J., Zhang, Y. L. & Bozzetti, C., 2014. High secondary aerosol contribution to particulate pollution during haze events in China. Nature, 514(7521), 218.
Huang, T. Y., Chu, H. C., Lin, Y. L., Lin, C. K., Hsieh, T. Y., Chang, W. K., Chao, Y. C. & Liao, C. L., 2009. Minocycline attenuates experimental colitis in mice by blocking expression of inducible nitric oxide synthase and matrix metalloproteinases. Toxicology and Applied Pharmacology, 237(1), 69-82.
Huang, Z., Pan, X. D., Wu, P. G., Han, J. L. & Chen, Q., 2014. Heavy metals in vegetables and the health risk to population in Zhejiang, China. Food Control, 36(1), 248-252.
Hylander, L. D., & Meili, M., 2003. 500 years of mercury production : Global annual inventory by region until 2000 and associated emissions. Science of the Total Environment, 304(1), 13-27.
Hylander, L. D., 2001. Global mercury pollution and its expected decrease after a mercury trade ban. Water, Air, and Soil Pollution, 125(1), 331-344.
Hylander, L. D., 2002. Determination of parameters influencing methylation and demethylation in tropical lakes in Brazil and Nicaragua. Highlights and Achievements (No. NAHRES--69).
Jen, Y. S., Chen, W. H., Hung, C. H., Yuan, C. S. & Ie, I. R., 2014. Field measurement of total gaseous mercury and its correlation with meteorological parameters and criteria air pollutants at a coastal site of the Penghu Islands, Aerosol and Air Quality Research., 14, 364-375.
Jen, Y. S., Yuan, C. S., Lin, Y. C. & Lee, C. G., 2010. Tempospatial partition of gaseous elemental mercury (GEM) and particulate mercury (PM) at background and heavily polluted urban sites in Kaohsiung City, A&WMA International Specialty Conference, Xi'an., China, May 10-14.
Johnson, D. L. & Braman, R. S., 1974. Distribution of atmospheric mercury species near ground. Environmental Science & Technology, 8(12), 1003-1009.
Karatza, D., Lancia, A., Musmarra, D. & Zucchini, C., 2000. Study of mercury absorption and desorption on sulfur impregnated carbon. Experimental Thermal and Fluid Science, 21(1), 150-155.
Karthik, R., Paneerselvam, A., Ganguly, D., Hariharan, G., Srinivasalu, S., Purvaja, R. & Ramesh, R., 2017. Temporal variability of atmospheric Total Gaseous Mercury and its correlation with meteorological parameters at a high-altitude station of the South India. Atmospheric Pollution Research, 8(1), 164-173.
Kentisbeer, J., Leeson, S., Malcolm, H., Leith, I. & Cape, J. N., 2013. An overview of atmospheric mercury monitoring at Auchencorth Moss, the UK EMEP Supersite in southern Scotland: trends, patterns and a source analysis. In E3S Web of Conferences (Vol. 1). EDP Sciences.
Kilgroe, J. D., 1996. Control of dioxin, furan, and mercury emissions from municipal waste combustors. Journal of Hazardous Materials, 47(1-3), 163-194.
Kim, J. P. & Fitzgerald, W. F., 1986. Sea-air partitioning of mercury in the equatorial Pacific Ocean. Science, 231, 1131-1134.
Kim, K. H., Brown, R. J., Kwon, E., Kim, I. S. & Sohn, J. R., 2016. Atmospheric mercury at an urban station in Korea across three decades. Atmospheric Environment, 131, 124-132.
Kim, K. H., Ebinghaus, R., Schroeder, W. H., Blanchard, P., Kock, H.H., Steffen, A., Froude, F. A. & Kim, J. H., 2005. Atmospheric mercury concentrations from several observatory sites in the Northern Hemisphere. Journal of Atmospheric Chemistry, 50(1), 1-24.
Kim, P. R., Han, Y. J., Holsen, T. M. & Yi, S. M., 2012. Atmospheric particulate mercury: Concentrations and size distributions. Atmospheric Environment, 61, 94-102.
Kim, S. H., Han, Y. J., Holsen, T. M. & Yi, S. M., 2009. Characteristics of atmospheric speciated mercury concentrations (TGM, Hg (II) and Hg (p)) in Seoul, Korea. Atmospheric Environment, 43(20), 3267-3274.
Kock, H. H., Bieber, E., Ebinghaus, R., Spain, T. G. & Thees, B., 2005. Comparison of long-term trends and seasonal variations of atmospheric mercury concentrations at the two European coastal monitoring stations Mace Head, Ireland, and Zingst, Germany. Atmospheric Environment, 39(39), 7549-7556.
Krabbenhoft, D. P. & Sunderland, E. M., 2013. Global change and mercury. Science, 341(6153), 1457-1458.
Kudo, A., Fujikawa, Y., Miyahara, S., Zheng, J., Takigami, H., Sugahara, M. & Muramatsu, T., 1998. Lessons from Minamata mercury pollution, Japan—after a continuous 22 years of observation. Water Science and Technology, 38(7), 187-193.
Kuo, T. H., Chang, C. F., Urba, A. & Keivtkus, K., 2006. Atmospheric gaseous mercury in Northern Taiwan, Science of the Total Environment., 368, 10-18.
Lamborg, C. H., Fitzgerald, W. F., O’Donnell, J. & Torgersen, T., 2002. A non-steady-state compartmental model of global-scale mercury biogeochemistry with interhemispheric atmospheric gradients. Geochimica et Cosmochimica Acta, 66(7), 1105-1118.
Laurier, F. J. G., Mason, R. P., Gill, G. A. & Whalin, L., 2004. Mercury distributions in the North Pacific Ocean—20 years of observations. Marine Chemistry, 90(1), 3-19.
Laurier, F. J., Mason, R. P., Whalin, L. & Kato, S., 2003. Reactive gaseous mercury formation in the North Pacific Ocean's marine boundary layer: A potential role of halogen chemistry. Journal of Geophysical Research: Atmospheres, 108(D17), ACH 3-1, CiteID 4529.
Li, J., Sommar, J., Wängberg, I., Lindqvist, O. & Wei, S. Q., 2008. Short-time variation of mercury speciation in the urban of Göteborg during GÖTE-2005. Atmospheric Environment, 42(36), 8382-8388.
Li, Y., Wang, Y., Li, Y., Li, T., Mao, H., Talbot, R., Nie, X., Wu, C., Zhao, Y., Hou, C., Wang, G., Zhuo, J. & Qie, G., 2017. Characteristics and potential sources of atmospheric particulate mercury in Jinan, China. Science of the Total Environment, 574, 1424-1431.
Lin, C. J. & Pehkonen, S. O., 1999. The chemistry of atmospheric mercury: a review. Atmospheric Environment, 33(13), 2067-2079.
Lin, L. Y., Chang, L. F. & Jiang, S. J. 2008. Speciation analysis of mercury in cereals by liquid chromatography chemical vapor generation inductively coupled plasma-mass spectrometry. Journal of Agricultural and Food Chemistry, 56(16), 6868-6872.
Lindberg, R. J., Shea, C., Humes, K. L. & Tanner, R. L., 2007. Atmospheric mercury in the Great Smoky Mountains compared to regional and global levels. Atmospheric Environment, 41(9), 1861-1873.
Lindberg, S. A. & Stratton, W. J., 1998. Atmospheric mercury speciation: Concentrations and behavior of reactive gaseous mercury in ambient air. Environmental Science & Technology, 32(1), 49-57.
Lindberg, S. E., Meyers, T. P., Taylor, G. E., Turner, R. R. & Schroeder, W. H., 1992. Atmosphere‐surface exchange of mercury in a forest: Results of modeling and gradient approaches. Journal of Geophysical Research: Atmospheres, 97(D2), 2519-2528.
Lindberg, S. E., Wallschlaeger, D., Prestbo, E. M., Bloom, N. S., Price, J. & Reinhart, D., 2001. Methylated mercury species in municipal waste landfill gas sampled in Florida, USA. Atmospheric Environment, 35(23), 4011-4015.
Lindberg, S., Bullock, R., Ebinghaus, R., Engstrom, D., Feng, X., Fitzgerald, W., Pirrone, N., Prestbo, E. & Seigneur, C., 2007. A synthesis of progress and uncertainties in attributing the sources of mercury in deposition. AMBIO: A Journal of the Human Environment, 36(1), 19-33.
Lindqvist, H.O. & Rodhe, H., 1985. Atmospheric merucry-A review, Tellus., 27B, 136-159.
Liu, B., Keeler, G. J., Dvonch, J. T., Barres, J. A., Lynam, M. M., Marsik, F. J. & Morgan, J. T., 2007. Temporal variability of mercury speciation in urban air. Atmospheric Environment, 41(9), 1911-1923.
Liu, B., Keeler, G. J., Dvonch, J. T., Barres, J. A., Lynam, M. M., Marsik, F. J. & Morgan, J. T., 2010. Urban–rural differences in atmospheric mercury speciation. Atmospheric Environment, 44(16), 2013-2023.
Liu, S., Nadim, F., Perkins, C., Carley, R. J., Hoag, G. E., Lin, Y. & Chen, L., 2002. Atmospheric mercury monitoring survey in Beijing, China. Chemosphere, 48(1), 97-107.
Lo, J. M. & Wai, C. M., 1975. Mercury loss from water during storage. Mechanisms and prevention. Analytical Chemistry, 47(11), 1869-1870.
Lu, J. Y. & Schroeder, W. H., 2004. Annual time‐series of total filterable atmospheric mercury concentrations in the Arctic. Tellus B, 56(3), 213-222.
Lu, J. Y., Schroeder, W. H., Berg, T., Munthe, J., Schneeberger, D. & Schaedlich, F., 1998. A device for sampling and determination of total particulate mercury in ambient air. Analytical Chemistry, 70(11), 2403-2408.
Lutter, R. & Irwin, E., 2002. Mercury in the environment: A volatile problem. Environment: Science and Policy for Sustainable Development, 44(9), 24-40.
Lyman, S. N. & Gustin, M. S., 2009. Determinants of atmospheric mercury concentrations in Reno, Nevada, USA. Science of the Total Environment, 408(2), 431-438.
Lynam, M. M. & Keeler, G. J., 2002. Comparison of methods for particulate phase mercury analysis: sampling and analysis. Analytical and Bioanalytical Chemistry, 374(6), 1009-1014.
Manning, D. C., 1970. Non-flame methods for mercury determination by atomic absorption absorption-A review. Atomic Absorption Newsletter, 9(5), 97–99.
Mason, R. P. & Sheu, G. R., 2002. Role of the ocean in the global mercury cycle. Global Biogeochemical Cycles, 16(4), 40-1–40-14.
Mason, R. P., Fitzgerald, W. F. & Morel, F. M., 1994. The biogeochemical cycling of elemental mercury: anthropogenic influences. Geochimica et Cosmochimica Acta, 58(15), 3191-3198.
Michel, C., Hervieu, M., Borel, M. M., Grandin, A., Deslandes, F., Provost, J. & Raveau, B., 1987. Superconductivity in the Bi-Sr-Cu-O system. Zeitschrift für Physik B Condensed Matter, 68(4), 421-423.
Morita, H., Tanaka, H., & Shimomura, S. 1994. Atomic fluorescence spectrometry of mercury: principles and developments. Spectrochimica Acta Part B: Atomic Spectroscopy, 50(1), 69-84.
Munthe, J., Angberg, I. W., Pirrone, N., Ivefeldt, Å., Ferrara, R., Ebinghaus, R., Feng, X., Gårdfeldt, K., Lanzillotta, G. K. E., Lindberg, S.E., Lu, J., Mamane, Y., Prestbo, E., Schmolke, S., Schroeder, W. H., Sommer, J., Sprovieri, F., Stevens, R.K., Stratton, W., Tuncel, G. & Urba, A., 2001. Intercomparison of methods for sampling and analysis of atmospheric mercury species, Atmospheric Environment., 35, 3007-3017.
Muscat, V. I., Vickers, T. J. & Andren, A., 1972. Simple and versatile atomic fluorescence system for determination of nanogram quantities of mercury. Analytical Chemistry, 44(2), 218-221.
NASA FIRMS Web Fire Mapper: https://firms.modaps.eosdis.nasa.gov/firemap/
Nater, E. A. & Grigal, D. F., 1992. Regional trends in mercury distribution across the Great Lakes states, north central USA. Nature, 358(6382), 139-141.
NOAA Air Resources Laboratory: http://ready.arl.noaa.gov/HYSPLIT.php
Park, J. D. & Zheng, W., 2012. Human exposure and health effects of inorganic and elemental mercury. Journal of Preventive Medicine and Public Health, 45(6), 344-352.
Patrick, L., 2002. Mercury toxicity and antioxidants: part i: role of glutathione and alpha-lipoic acid in the treatment of mercury toxicity-mercury toxicity. Toxicology and Applied Pharmacology, 7, 456-471.
Peterson, C., Alishahi, M. & Gustin, M. S., 2012. Testing the use of passive sampling systems for understanding air mercury concentrations and dry deposition across Florida, USA. Science of the Total Environment, 424, 297-307.
Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R. B., Friedli, H. R., Leaner, J., Mason, R., Mukherjee, A.B., Stracher, G.B. & Telmer, K., 2010. Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmospheric Chemistry and Physics, 10(13), 5951-5964.
Pirrone, N., Costa, P., Pacyna, J. M. & Ferrara, R., 2001. Mercury emissions to the atmosphere from natural and anthropogenic sources in the Mediterranean region. Atmospheric Environment, 35(17), 2997-3006.
Poissant, L., Pilote, M., Beauvais, C., Constant, P. & Zhang, H.H., 2005. A year of continuous measurements of three atmospheric mercury species (GEM, RGM and Hgp) in southern Québec, Canada, Atmospheric Environment., 39, 1275-1287.
Ren, X., Luke, W. T., Kelley, P., Cohen, M., Ngan, F., Artz, R., Walker, J., Brooks, S., Moore, C. & Bauer, D., 2014. Mercury speciation at a coastal site in the northern Gulf of Mexico: Results from the Grand Bay Intensive Studies in summer 2010 and spring 2011. Atmosphere, 5(2), 230-251.
Rutter, A. P., Schauer, J. J., Lough, G. C., Snyder, D. C., Kolb, C. J., Von Klooster, S., Rudolf, T., Manolopoulos, H. & Olson, M. L., 2008. A comparison of speciated atmospheric mercury at an urban center and an upwind rural location. Journal of Environmental Monitoring, 10(1), 102-108.
Rutter, A. P., Snyder, D. C., Stone, E. A., Schauer, J. J., Gonzalez-Abraham, R., Molina, L. T., Cardenas, B. & Foy, B. D., 2009. In situ measurements of speciated atmospheric mercury and the identification of source regions in the Mexico City Metropolitan Area. Atmospheric Chemistry and Physics, 9(1), 207-220.
Sakata, M. & Marumoto, K., 2002. Formation of atmospheric particulate mercury in the Tokyo metropolitan area. Atmospheric Environment, 36(2), 239-246.
Schleicher, N. J., Schäfer, J., Chen, Y., Blanc, G., Chai, F., Cen, K. & Norra, S., 2016. Atmospheric particulate mercury in the megacity Beijing: Efficiency of mitigation measures and assessment of health effects. Atmospheric Environment, 124, 396-403.
Schroeder, W. H. & Munthe, J., 1998. Atmospheric mercury-An overview. Atmospheric Environment, 32(5), 809-822.
Schroeder, W.H., Yarwood, G. & Niki, H., 1991 Transformation processes involving mercury species in the atmosphere - Results from a literature survey. Water, Air, & Soil Pollution, 56, 653-666.
Schuster, E., 1991. The behavior of mercury in the soil with special emphasis on complexation and adsorption processes-A review of the literature, Water, Air, & Soil Pollution, 56, 667-680.
Seigneur, C., Vijayaraghavan, K. & Lohman, K., 2006. Atmospheric mercury chemistry: Sensitivity of global model simulations to chemical reactions. Journal of Geophysical Research: Atmospheres, 111(D22).
Sheu, G. R. & Mason, R. P., 2001 An examination of methods for the measurements of reactive gaseous mercury in the atmosphere. Environmental Science & Technology, 35(6), 1209-1216.
Sheu, G. R., Lin, N. H., Lee, C. T., Wang, J. L., Chuang, M. T., Wang, S. H., Chi, K. H. & Ou-Yang, C. F., 2013. Distribution of atmospheric mercury in northern Southeast Asia and South China Sea during Dongsha experiment. Atmospheric Environment, 78, 174-183.
Sheu, G. R., Lin, N. H., Wang, J. L., Lee, C. T., Ou-Yang, C. F. & Wang, S. H., 2010. Temporal distribution and potential sources of atmospheric mercury measured at a high-elevation background station in Taiwan, Atmospheric Environment, 44, 2393-2400.
Sheu, G. R., Mason, R. P. & Lawson, N. M., 2002. Speciation and distribution of atmospheric mercury over the northern Chesapeake Bay. Chemicals in the Environment, 12, 223-242.
Shimomura, S., 1989. Analytical behavior and some physical properties of mercury-A review. Analytical Sciences, 5(6), 633-639.
Shon, Z. H., Kim, K. H., Kim, M. Y. & Lee, M., 2005. Modeling study of reactive gaseous mercury in the urban air. Atmospheric Environment, 39(4), 749-761.
Siudek, P., Kurzyca, I. & Siepak, J., 2016. Atmospheric deposition of mercury in central Poland: sources and seasonal trends. Atmospheric Research, 170, 14-22.
Slemr, F., Schuster, G. & Seiler, W., 1985 Distribution, speciation and budget of atmospheric mercury. Journal of Atmospheric Chemistry, 3, 407-434.
Slemr, F., Seiler, W. & Schuster, G., 1981. Latitudinal distribution of mercury over the Atlantic Ocean. Journal of Geophysical Research: Oceans, 86(C2), 1159-1166.
Sommar, J., Feng, X., Gårdfeldt, K. & Lindqvist, O., 1999. Measurements of fractionated gaseous mercury concentrations over northwestern and central Europe, 1995-99. Journal of Environmental Monitoring, 1(5), 435-439.
Song, X., Cheng, I. & Lu, J., 2009. Annual atmospheric mercury species in downtown Toronto, Canada. Journal of Environmental Monitoring, 11(3), 660-669.
Sprovieri, F., Hedgecock, I. M. & Pirrone, N., 2010. An investigation of the origins of reactive gaseous mercury in the Mediterranean marine boundary layer. Atmospheric Chemistry and Physics, 10(8), 3985-3997.
Steffen, A., Bottenheim, J., Cole, A., Ebinghaus, R., Lawson, G. & Leaitch, W. R., 2014. Atmospheric mercury speciation and mercury in snow over time at Alert, Canada. Atmospheric Chemistry and Physics, 14(5), 2219-2231.
Streets, D. G., Hao, J., Wu, Y., Jiang, J., Chan, M., Tian, H. & Feng, X., 2005. Anthropogenic mercury emissions in China. Atmospheric Environment, 39(40), 7789-7806.
Subir, M., Ariya, P. A. & Dastoor, A. P., 2011. A review of uncertainties in atmospheric modeling of mercury chemistry I. Uncertainties in existing kinetic parameters–Fundamental limitations and the importance of heterogeneous chemistry. Atmospheric Environment, 45(32), 5664-5676.
Tekran, 1998. Model 2357A-principles of operation.
UNEP Mercury Time to Act, 2013。
UNEP Global Mercury Assessment, 2013。
Ure, A. M., 1975. The determination of mercury by non-flame atomic absorption and fluorescence spectrometry: A review. Analytica Chimica Acta, 76(1), 1-26.
Valente, R. J., Shea, C., Humes, K. L. & Tanner, R. L., 2007. Atmospheric mercury in the Great Smoky Mountains compared to regional and global levels. Atmospheric Environment, 41(9), 1861-1873.
Wang, D., Shi, X. & Wei, S., 2003. Accumulation and transformation of atmospheric mercury in soil. Science of the Total Environment, 304(1), 209-214.
Wang, F., Macdonald, R. W., Armstrong. D. A. &. Stern, G. A., 2012a. Total and methylated mercury in the Beaufort Sea: The role of local and recent organic remineralization. Environmental Science and Technology, 46, 11821-11828.
Wang, J., Zhang, L. & Xie, Z., 2016a. Total gaseous mercury along a transect from coastal to central Antarctic: Spatial and diurnal variations. Journal of Hazardous Materials, 317, 362-372.
Wang, N., Lin, M., Dai, H. & Ma, H., 2016b. Functionalized gold nanoparticles/reduced graphene oxide nanocomposites for ultrasensitive electrochemical sensing of mercury ions based on thymine–mercury–thymine structure. Biosensors and Bioelectronics, 79, 320-326.
Wang, Y. M., Wang, D. Y., Meng, B., Peng, Y. L., Zhang, L. & Zhu, J. S., 2012b. Spatial and temporal distributions of total and methyl mercury in precipitation in core urban areas, Chongqing, China. Atmospheric Chemistry and Physics Discussions, 12, 10243-10272.
Weigelt, A., Temme, C., Bieber, E., Schwerin, A., Schuetze, M., Ebinghaus, R. & Kock, H. H., 2013. Measurements of atmospheric mercury species at a German rural background site from 2009 to 2011–Methods and results. Environmental Chemistry, 10(2), 102-110.
Weiss-Penzias, P., Jaffe, D. A., McClintick, A., Prestbo, E. M. & Landis, M. S., 2003., Gaseous elemental mercury in the marine boundary layer: Evidence for rapid removal in anthropogenic pollution. Environmental Science & Technology, 37(17), 3755-3763.
Winefordner, J. D. & Vickers, T. J., 1964. Atomic fluorescence spectroscopy as a means of chemical analysis. Analytical Chemistry, 36(1), 161-165.
Wood, D. O., 1910. The liberation of helium from minerals by the action of heat. Proceedings of the Royal Society of London. Series A, 84(567), 70-78.
Xiu, G. L., Jin, Q., Zhang, D., Shi, S., Huang, X., Zhang, W., Bao, L., Gao, P. & Chen, B., 2005. Characterization of size-fractionated particulate mercury in Shanghai ambient air. Atmospheric Environment, 39(3), 419-427.
Xiu, G., Cai, J., Zhang, W., Zhang, D., Büeler, A., Lee, S., Xu, L., Huang, X. & Zhang, P., 2009. Speciated mercury in size-fractionated particles in Shanghai ambient air. Atmospheric Environment, 43(19), 3145-3154.
Xu, L., Chen, J., Yang, L., Niu, Z., Tong, L., Yin, L. & Chen, Y., 2015. Characteristics and sources of atmospheric mercury speciation in a coastal city, Xiamen, China. Chemosphere, 119, 530-539.
Yang, H., Rose, N. L., Battarbee, R. W. & Boyle, J. F., 2002. Mercury and lead budgets for Lochnagar, a Scottish mountain lake and its catchment. Environmental Science & Technology, 36(7), 1383-1388.
Yu, Z. Z., Watson, P. K. & Facci, J. S., 1990. The contact charging of PTFE by mercury: The effect of a thiophene monolayer on charge exchange. Journal of Physics D: Applied Physics, 23(9), 1207.
Yuan, C. S., Lin, H. Y., Wu, C. H., Liu, M. H. & Hung, C. H., 2004. Preparation of sulfurized powdered activated carbon from waste tires using an innovative compositive impregnation process. Journal of the Air & Waste Management Association, 54(7), 862-870.
Zhang, H. A. & Lindberg, S. E., 1999. Processes influencing the emission of mercury from soils: A conceptual model. Journal of Geophysical Research: Atmospheres, 104(D17), 21889-21896.
Zhang, H., Fu, X. W., Lin, C. J., Wang, X. & Feng, X. B., 2015. Observation and analysis of speciated atmospheric mercury in Shangri-La, Tibetan Plateau, China. Atmospheric Chemistry and Physics, 15(2), 653-665.
Zhang, Z. Y., Wong, M. S. & Lee, K. H., 2015. Estimation of potential source regions of PM2.5 in Beijing using backward trajectories. Atmospheric Pollution Research, 6(1), 173-177.
Zielonka, U., Hlawiczka, S., Fudala, J., Wängberg, I. & Munthe, J., 2005. Seasonal mercury concentrations measured in rural air in Southern Poland: Contribution from local and regional coal combustion. Atmospheric Environment, 39(39), 7580-7586.
馮新斌,2003,“大氣活性氣態汞採樣和分析方法”,分析化學研究簡報。
李佳樺,2004,“東亞大氣汞之長程輸送研究:雲水中汞之定量分析與指紋建立”,國立中央大學化學研究所碩士論文
林能暉,2005-2010,“亞洲大氣污染物之長程輸送與衝擊研究(總計畫) -總計畫與子計畫一:區域大氣污染物長期監測站之建置與其成分量測(Ⅰ)(Ⅱ)(III) ”,國科會專題研究計畫。
袁中新,2010,“99年度高雄市汞污染源周界及敏感點大氣汞污染監測計畫書”,高雄市環境保護局計畫報告。
林建志,2006,“台灣平地與高山大氣汞監測與比較”,國立中央大學化學研究所碩士論文。
李仲根,2007,“大氣中不同形態汞的採樣和分析方法”,中國環境監測。
許桂榮,2007-2009,“亞洲大氣污染物之長程輸送與衝擊研究-第二期--長程輸送大氣汞之乾濕沈降監測(Ⅰ)(Ⅱ)”,國科會專題研究計畫。
蘇明德,2008,“汞的自述”,科學發展。
李宗璋,2009,“金廈地區懸浮微粒物化特性分析及污染源解析探討”,國立中山大學環境工程研究所碩士論文。
趙恒,2009,“利用後向軌跡模式研究 TRACE-P 期間香港大氣污染物的來源”,熱帶氣象學報。
顏晟容,2011,“台灣地區汞之物質流分析及其衝擊評估”,臺北科技大學環境工程與管理研究所學位論文。
李哲民,2012,“大氣汞污染的研究進展與監測方法”,環境與可持續發展
蔡政謀,2013,“台灣寺廟拜香及金紙焚燒排放含汞污染物之室內外環境日夜變化及排放係數量測”,國立中山大學環境工程研究所碩士論文。
任翼秀,2013,“工業都市及海島地區大氣汞時空分佈、氣固相分佈及長程傳輸之影響”,國立中山大學環境工程研究所博士論文。
張億閔,2014,“台灣海峽周邊地區大氣汞時空分佈及污染來源解析”,國立中山大學環境工程研究所碩士論文。
陳帝文,2015,“澎湖群島大氣汞污染物濃度時空分佈及化學特徵分析”,國立中山大學環境工程研究所碩士論文。
俞科愛,2015,“寧波秋冬季空氣污染變化特徵及污染物後向軌跡分析”浙江氣象。
吳方堃,2016,“長白山背景站大氣 VOCs 濃度變化特徵及來源分析”,中國環境科學。
陳靜,2016,“石家莊一次沙塵氣溶膠污染過程及光學特性”,中國環境科學。
蔡孟延,2016,“台灣海峽及南海交界區域不同型態大氣汞污染物時空變化及傳輸路徑分類探討”,國立中山大學環境工程研究所碩士論文。
國家環境毒物研究中心,1999,“Mercury - ToxFAQs™”。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code