Responsive image
博碩士論文 etd-0714117-171633 詳細資訊
Title page for etd-0714117-171633
論文名稱
Title
M面非極性氮化錳鎵薄膜之磁性與光譜性質分析
The magnetic and spectroscopic properties of nonpolar m-plane GaN:Mn thin films
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
92
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-06-29
繳交日期
Date of Submission
2017-08-21
關鍵字
Keywords
氮化鎵、過渡元素、合金團簇、氮化錳鎵、稀磁性半導體
GaMnN, GaN, transition element, inclusions, diluted magnetic semiconductors
統計
Statistics
本論文已被瀏覽 5711 次,被下載 0
The thesis/dissertation has been browsed 5711 times, has been downloaded 0 times.
中文摘要
氮化錳鎵被認為是未來可在室溫操作的稀磁性半導體(DMS)之一,本實驗所使用的樣品為本實驗室氮電漿輔助式分子束磊晶系統(PAMBE)在m面氮化鎵基板上成長不同錳含量之氮化錳鎵稀磁性半導體薄膜。成長過程利用控制氣動閥門開關將錳元素摻雜至氮化鎵薄膜,目的為抑制稀磁性半導體材料內過渡元素錳相關二次相的形成。樣品的結構與相關磁特性將透過掃描式電子顯微鏡(SEM)、拉曼光譜(Raman spectroscopy)、光致螢光(PL)、高解析x射線繞射(HRXRD)、x光吸收能譜儀(XAS)、x光光電子能譜儀(XPS)、超導量子干涉儀(SQUID)及磁性特性進行分析。
樣品藉由掃描式電子顯微鏡(SEM)觀察樣品形貌相關資訊,從拉曼光譜(Raman spectroscopy)得知錳有成功地取代鎵的位置,光致螢光(PL)則觀察出m面非極性氮化鎵之光學各向異性性質。經由高解析x射線繞射(HRXRD)系統確認樣品的成長方向為m面,且沒有發現二次相相關合金團簇存在於樣品中。透過x光光電子能譜儀(XPS)、x光吸收能譜儀(XAS)得知樣品的錳含量為2%~15%及錳的化學態為+2、+3價。最後藉由超導量子干涉儀(SQUID)的磁性量測得知樣品具有室溫鐵磁性的潛力。
Abstract
Ga1-xMnxN has been considered to be one of the candidates for diluted magnetic semiconductors (DMS). In this thesis, we study the properties of epitaxial Ga1-xMnxN thin films grown on nonpolar m-plane GaN templates by plasma-assisted molecular beam epitaxy (PAMBE). The Mn contents in Ga1-xMnxN were varied by shutter control. The purpose is to inhibit the formation of secondary phase in diluted magnetic semiconductors. Samples were characterized and analyzed by scanning electron microscopy (SEM), Raman spectroscopy, photoluminescence (PL), high resolution x-ray diffraction (HRXRD), x-ray absorption spectroscopy (XAS), x-ray photoelectron spectroscopy (XPS), and superconducting quantum interference device (SQUID) magnetometry.
SEM images show the surface morphology of the samples. The Raman scattering indicate the Mn atoms successfully substitute Ga sites. Nonpolar m-plane GaN:Mn thin films have the anisotropic optical properties are investigated using PL. The crystal orientation is m-axis, without secondary phase inclusions were confirmed through HRXRD. The concentration of Mn atoms are 2%~15% and the configuration of Mn ions are Mn+2、Mn+3 was determined by XPS and XAS. Finally, above room temperature ferromagnetism of Ga1-xMnxN thin films is observed by magnetization measurement of SQUID.
目次 Table of Contents
目錄
論文審定書 i
摘 要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1.1 氮化鎵背景 1
1.2 非極性氮化鎵光學特性及發展 4
1.3 稀磁性半導體發展與介紹 6
第二章 實驗系統與原理介紹 9
2.1 分子束磊晶系統 (plasma assisted molecular beam epitaxy, PAMBE) 9
2.2 掃描式電子顯微鏡 (scanning electron microscopy, SEM) 11
2.3 拉曼光譜 (Raman spectroscopy) 13
2.4 光致螢光 (photoluminescence, PL) 15
2.5 x光吸收能譜儀 (x-ray absorption spectroscopy, XAS) 16
2.6 x光光電子能譜儀 (x-ray photoelectron spectroscopy, XPS) 17
2.7 超導量子干涉儀 (superconducting quantum interference device, SQUID) 18
2.8 高解析x光繞射 (high-resolution x-ray diffraction, HRXRD) 19
第三章 實驗程序與樣品資訊 21
3.1 系列一不同錳成長時間於m-GaN模板上成長Ga1-xMnxN薄膜之樣品資訊 21
3.2 系列二不同成長溫度於m-GaN模板上成長Ga1-xMnxN薄膜之樣品資訊 23
第四章 量測分析與討論 25
4.1 m面氮化錳鎵薄膜結構特性 (The structural properties of m plane Ga1-xMnxN thin films) 25
4.1.1 掃描式電子顯微鏡影像 (SEM images) 25
4.1.2 高解析x光繞射光譜 (HRXRD spectrums) 29
4.2 m面氮化錳鎵中錳含量及電子組態之分析 (Analysis of Mn component and the configuration in m plane Ga1-xMnxN thin films) 34
4.2.1 x光吸收能譜量測 (XAS measurement) 34
4.2.2 x光光電子能譜量測 (XPS measurement) 39
4.3 m面氮化錳鎵薄膜光學極性 (The optical polarity of m plane GaMnN thin films) 44
4.3.1 光致螢光光譜量測 (PL measurement) 44
4.3.2 拉曼光譜量測 (Raman measurement) 59
4.4 m面氮化錳鎵薄膜磁特性 (The magnetic properties of m plane GaMnN thin films) 65
4.4.1 超導量子干涉儀磁矩與磁場關係曲線量測 (The magnetization-magnetic field measurement of SQUID) 65
4.4.2 超導量子干涉儀磁矩與溫度關係曲線量測 (The magnetization-temperature measurement of SQUID) 72
第五章 結論 78
參考文獻 79
參考文獻 References
[1] U. Lafont et al., ‘Increasing the Reliability of Solid State Lighting Systems via Self-Healing Approaches: A Review’, Microelectronics Reliability, 52 (2012)
[2] O. Ambacher et al., ‘Two-Dimensional Electron Gases Induced by Spontaneous and Piezoelectric Polarization Charges in N- and Ga-Face AlGaN/GaN Heterostructures’, Journal of Applied Physics, 85.6 (1999)
[3] R. Dimitrov et al., ‘Two-Dimensional Electron Gases in Ga-Face and N-Face AlGaN/GaN Heterostructures Grown by Plasma-Induced Molecular Beam Epitaxy and Metalorganic Chemical Vapor Deposition on Sapphire’, Journal of Applied Physics, 87.7 (2000)
[4] S. Nakamura, ‘GaN Growth Using GaN Buffer Layer’, Japanese Journal of Applied Physics, 30.10A (1991)
[5] L. Liu and J. H. Edgar, ‘Substrates for Gallium Nitride Epitaxy’, Materials Science and Engineering, R 37 (2002)
[6] 黃延儀, ‘以電漿輔助式分子束磊晶成長應用於高電子遷移率電晶體之氮化鋁鎵/氮化鎵異質結構’, 國立交通大學材料科學與工程研究所-博士論文, (2011)
[7] J. Zou and W. Xiang, ‘Nonpolar M - and a -Plane GaN Thin Films Grown on G -LiAlO 2 Substrates’, Journal of Crystal Growth, 311 (2009)
[8] A. E. Romanov et al., ‘Strain-Induced Polarization in Wurtzite III-Nitride Semipolar Layers’, Journal of Applied Physics, 100 (2006)
[9] H. Masui et al., ‘Nonpolar and Semipolar III-Nitride Light-Emitting Diodes : Achievements and Challenges’, IEEE TRANSACTIONS ON ELECTRON DEVICES, 57.1 (2010)
[10] S. Ghosh et al., ‘Comparative Study of the Electronic Band Structure of Strained C -Plane and M -Plane GaN Films by Polarized Photoreflectance Spectroscopy’, phys. stat. sol,78.1 (2002)
[11] S. Ghosh et al., ‘Strained M-Plane GaN for the Realization of Polarization-Sensitive Photodetectors Strained M-Plane GaN for the Realization of Polarization-Sensitive Photodetectors’, Appl. Phys. Lett, 81 (2007)
[12] D. M. Schaadt et al., ‘Polarization-Dependent Beam Switch Based on an M-Plane GaN / AlN Distributed Bragg Reflector Polarization-Dependent Beam Switch Based on an M -Plane GaN / AlN Distributed Bragg Reflector’, Appl. Phys. Lett, 90 (2007)
[13] A. Arora and S. Ghosh, ‘Polarization of Emission from Non-Polar III-Nitride Quantum Wells : The Influence of’, J. Phys. D: Appl. Phys, 47 (2014)
[14] K. Domen et al., ‘Optical Gain for Wurtzite GaN with Anisotropic Strain in c Plane’, Appl. Phys. Lett, 70 (2011)
[15] P. Waltereit et al., ‘Nitride Semiconductors Free of Electrostatic Fields for Efficient White Light-Emitting Diodes’, Nature, 406 (2000)
[16] Y. J. Sun et al., ‘Polarization Anisotropy of the Photoluminescence of M-Plane ( In , Ga ) N / GaN Multiple Quantum Wells Polarization Anisotropy of the Photoluminescence of M -Plane (In,Ga)N/GaN Multiple Quantum Wells’, Appl. Phys. Lett, 82 (2012)
[17] S. Ghosh et al., ‘Electronic Band Structure of Wurtzite GaN under Biaxial Strain in the M Plane Investigated with Photoreflectance Spectroscopy’, Physical Review B, 65 (2002)
[18] K-C. Kim et al., ‘Improved Electroluminescence on Nonpolar M -Plane InGaN / GaN Quantum Wells LEDs Pss’, phys. stat. sol, 125-127 (2007)
[19] 胡裕民, 物理雙月刊, 二十六卷四期, (2004)
[20] J. K. Furdyna, ‘Diluted magnetic semiconductors’, Journal of Applied Physics,
64.29 (1988)
[21] A. Haury et al., ‘Observation of a Ferromagnetic Transition Induced by
Two-Dimensional Hole Gas in Modulation-Doped CdMnTe Quantum Wells’, Physical Review Letters, 79.3 (1997)
[22] D. Ferrand et al., ‘Carrier Induced Ferromagnetic Interactions and Transport Properties of P-Zn(1-x)MnxTe Epilayers’, Journal of Applied Physics, 87.9 (2000)
[23] H. Munekata et al., ‘Diluted Magnetic III-V Semiconductors’, Physical Review Letters, 63.17 (1989)
[24] H. Munekata et al., ‘Epitaxy of III–V Diluted Magnetic Semiconductor Materials’, J. Vac. Sci. Technol. B, 8.2 (1990)
[25] F. Matsukura et al., ‘Transport Properties and Origin of Ferromagnetism in (Ga,Mn)As’, Physical Review B, 57.4 (1998)
[26] K. Sato et al., ‘Magnetic Impurities and Materials Design for Semiconductor Spintronics’, Physica B: Condensed Matter, 340–342 (2003)
[27] T. Dietl et al., ‘Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors’, Science, 287 (2000)
[28] J. W. Chiou et al., ‘Angle-Dependent X-Ray Absorption Spectroscopy Study of Zn-Doped GaN’, Appl. Phys. Lett, 81 (2007)
[29] Kuo-Hao Lee et al., ‘The Characterization of N Interstitials and Dangling Bond Point Defects on Ion-Implanted GaN Nanowires Studied by Photoluminescence and X-Ray Absorption Spectroscopy’, Journal. Am. Ceram. Soc, 93.11 (2010)
[30] http://www.phy.cuhk.edu.hk/course/surfacesci/mod3/m3_s4.pdf
[31] http://www.uksaf.org/data/sfactors.html
[32] I. Tischer et al., ‘I2 Basal Plane Stacking Fault in GaN : Origin of the 3.32 eV Luminescence Band’, Physical Review B, 83 (2011)
[33] I. T. Yoon et al., ‘Observation of a Manganese Acceptor Level in Ferromagnetic Ga1 − XMnXN Layers’, Appl. Phys. Lett, 85.21 (2004)
[34] I. T. Yoon et al., ‘Characterization of Ferromagnetic Ga1 − xMnxN Layers Grown on Sapphire ( 0001 ) substrates’, Journal of Applied Physics, 95 (2012)
[35] Sukit Limpijumnong and Chris G.Van DeWalle, ‘Diffusivity of Native Defects in GaN’, Physical Review B, 69 (2004)
[36] O. Brandt et al., ‘In-Plane Polarization Anisotropy of the Spontaneous Emission of M-Plane GaN/(Al,Ga)N Quantum Wells’, Appl. Phys. Lett, 77.21 (2000)
[37] K. Domen, K. Horino et al., ‘Analysis of Polarization Anisotropy along the c Axis in the Photoluminescence of Wurtzite GaN’, Appl. Phys. Lett, 71.14 (1997)
[38] K. Kojima et al., ‘Photoluminescence and Optical Reflectance Investigation of Semipolar and Nonpolar GaN’, phys. stat. sol, 244.6 (2007)
[39] T. Kozawa et al., ‘Raman Scattering from LO Phononplasmon Coupled Modes in Gallium Nitride Raman Scattering’, Journal of Applied Physics, 75.2 (2012)
[40] H.Harima, ‘Raman Studies on Spintronics Materials Based on Wide Bandgap Semiconductors’, J. Phys.: Condens. Matter, 16 (2004)
[41] M.Asghar et al., ‘Study of Lattice Properties of Ga1-XMnXN Epilayers Grown by Plasma- Assisted Molecular Beam Epitaxy by Means of Optical Techniques’, Journal of Crystal Growth, 296 (2006)
[42] Cui-Xu Gao et al., ‘Optical and Structural Properties of Mn-Doped GaN Grown by Metal Organic’, CHIN. PHYS. LETT, 26.3 (2009)
[43] Yuan-ting Lin et al., ‘Enhanced Ferromagnetic Interaction in Modulation-Doped GaMnN Nanorods’, Nanoscale Research Letters, (2017)
[44] M. Zając et al., ‘Semiconductor Coupling in GaMnN Magnetic Paramagnetism and Antiferromagnetic D – D Coupling in GaMnN Magnetic Semiconductor’, Appl. Phys. Lett, 79.15 (2001)
[45] K. J. Friedland and K. H. Ploog, ‘Origin of High-Temperature Ferromagnetism in (Ga , Mn)N Layers Grown on 4H – SiC(0001) by Reactive Molecular-Beam Epitaxy’, Appl. Phys. Lett, 82.13 (2003)
[46] S. Gupta et al., ‘Electrical and Magnetic Properties of Ga1 − xGdxN Grown by Metal Organic Chemical Vapor Deposition’, Journal of Applied Physics, 110 (2015)
[47] C. Liu, F. Yun and H. Morkoc, ‘Ferromagnetism of ZnO and GaN : A Review’, Journal of Materials Science: Materials in Electronics, 16 (2005)
[48] L. Sun et al., ‘Structure and Magnetic Characteristics of Nonpolar a-Plane GaN : Mn Films’, Journal of Physics D: Appl. Phys, 41 (2008)
[49] L. Mino et al., ‘Low-Dimensional Systems Investigated by X-Ray Absorption Spectroscopy : A Selection of 2D , 1D and 0D Cases’, Journal of Physics D: Appl. Phys, 46 (2013)
[50] K. Lee et al., ‘The Characterization of N Interstitials and Dangling Bond Point Defects on Ion-Implanted GaN Nanowires Studied by Photoluminescence and X-Ray Absorption Spectroscopy’, J. Am. Ceram. Soc, 93.11 (2010)
[51] J.M. Wagner and F. Bechstedt, ‘Phonon deformation potentials of α-GaN and -AlN: An ab initio calculation’, Appl. Phys. Lett, 77.346 (2000)
[52] 張筑雅, ‘以拉曼及光致螢光分析m面氮化物之偏振性質’, 國立中山大學物理系-碩士論文, (2011)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.142.53.68
論文開放下載的時間是 校外不公開

Your IP address is 3.142.53.68
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code