Responsive image
博碩士論文 etd-0714117-172323 詳細資訊
Title page for etd-0714117-172323
論文名稱
Title
利用蝕刻空芯光纖製作高靈敏度的開放式共振腔法布里-培諾光纖 干涉儀感測器
Highly Sensitive Open-cavity Fiber-optic Fabry–Pérot Interferometer Based on Etched Hollow-core Fiber
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
81
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-13
繳交日期
Date of Submission
2017-08-18
關鍵字
Keywords
氣壓感測、流體折射率感測、開放式共振腔Fabry–Pérot光纖干涉儀、空芯光纖
Pressure sensing, Microfluidic sensing, Hollow-core fiber, Open-cavity fiber-optic Fabry–Pérot interferometer
統計
Statistics
本論文已被瀏覽 5717 次,被下載 31
The thesis/dissertation has been browsed 5717 times, has been downloaded 31 times.
中文摘要
Fabry–Pérot光纖干涉儀具備結構緊湊、高解析度以及可進行探針式感測等優點,因此被廣泛地應用在許多領域上,而開放式共振腔的類型更具備了極高的折射率靈敏度,適合應用於感測折射率的微小變化。過去有研究團隊利用飛秒雷射微製程或使用特殊光纖配合化學蝕刻方法來製作開放式共振腔,然而飛秒雷射價格昂貴,而特殊光纖取得困難,因而導致製作成本過高。本論文改用成本相對低廉的空芯光纖來製作元件,透過簡單的切割與熔接方法使空芯光纖串接在兩段單模光纖之間,形成封閉式Fabry–Pérot光纖干涉儀,再利過化學蝕刻方法製作開孔,達到共振腔與外界相通的目的。
我們利用製作完成的元件進行折射率、溫度、氣壓等環境參數感測,在折射率範圍1.3330~1.3418,其折射率靈敏度約為1209.92nm/RIU。而在溫度範圍30℃~80℃,測得溫度靈敏度為15.46pm/℃,並可得到環境溫度對於量測折射率所造成的誤差值約為1.25×10-5RIU/℃。另外,在氣壓量測範圍0psi~100psi,其氣壓靈敏度為29.45pm/psi,相較於其他純光纖製作的氣壓感測器,我們所製作的開放式共振腔Fabry–Pérot光纖感測器具有極高的氣壓靈敏度。
Abstract
Fiber-optic Fabry–Pérot interferometers (FPIs) have several advantages such as compact size, high resolution, and the ability of probe sensing, making them widely applied in many fields. In addition, due to their highly sensitivities, FPIs with open cavities have high potential in applications of refractive index (RI) sensing. In previous studies, an open cavity along a single-mode fiber (SMF) can be made by using femtosecond lasers or etching a particular fiber to form an open cavity for sensing. However, the femtosecond lasers are expensive, and particular fibers are difficult to be obtained, which often results in high cost. In this thesis, we employed chemical etching to create an open-cavity FPI sensor in a hollow-core fiber sandwiched between two SMFs, which is more inexpensive than the above mentioned sensors.
We apply the fabricated FPI sensor to perform the RI, thermal, and pressure sensing.
The RI sensitivity of the FPI is 1209.92 nm/RIU as the RI ranged from 1.3330 to 1.3418. The temperature sensitivity of the FPI is only 15.46 pm/℃ between 30 ℃~80 ℃, and the measurement error of RI is calculated to be 1.25×10-5 RIU/℃ by temperature influences. In addition, we have also measured the pressure response of the FPI sensor, and the sensitivity is 29.45 pm/psi as the pressure is from 0 psi to 100 psi. Compared with other all-fiber pressure sensors, our fabricated open-cavity FPI sensor has an ultra-high pressure sensitivity.
目次 Table of Contents
誌 謝 i
摘 要 ii
Abstract iii
目 錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1-1 光纖感測器 1
1-2 光纖干涉儀感測器 3
1-2.1 法布立-培若光纖干涉儀(Fabry–Pérot fiber interferometer) 5
1-2.2 邁克森光纖干涉儀(Michelson fiber interferometer) 8
1-2.3 馬赫-任德光纖干涉儀(Mach–Zehnder fiber interferometer) 9
1-2.4 薩格奈克光纖干涉儀(Sagnac fiber interferometer) 12
1-3 研究動機 14
第二章 Fabry–Pérot光纖干涉儀 15
2-1 Fabry–Pérot干涉儀的原理 15
2-2 Fabry–Pérot光纖干涉儀的原理 24
第三章 開放式共振腔Fabry–Pérot光纖干涉儀之元件製作方法 28
3-1 元件設計 28
3-2 元件製作方法 31
3-3 元件蝕刻特性 36
第四章 開放式共振腔Fabry–Pérot光纖干涉儀的干涉特性 38
4-1 元件量測架設 38
4-2 不同元件尺寸之干涉特性量測 41
4-3 元件蝕刻之量測結果與討論 44
第五章 開放式共振腔Fabry–Pérot光纖干涉儀的感測應用 48
5-1 折射率感測 48
5-2 溫度感測 52
5-3 氣壓感測 56
第六章 結論 62
參考文獻 63
參考文獻 References
[1] J. Hecht, “Short history of laser development,” Opt. Eng., vol. 49, pp. 091002-091002-23, 2010.
[2] L. Garwin and T. Lincoln, A Century of Nature: Twenty-one Discoveries That Changed Science and The World. Chicago and London: University of Chicago Press, 2003.
[3] D. Jackson, R. Priest, A. Dandridge, and A. B. Tveten, “Elimination of drift in a single-mode optical fiber interferometer using a piezoelectrically stretched coiled fiber,” Appl. Opt., vol. 19, pp. 2926-2929, 1980.
[4] S. Wu and G. Yan, “An open-cavity Fabry–Pérot interferometer with PVA coating for simultaneous measurement of relative humidity and temperature,” Sens. and Actuators B Chem., vol. 225, pp. 50-56, 2016.
[5] V. Bhatia, K. A. Murphy, R. O. Claus, T. A. Tran, and J. A. Greene, “Recent developments in optical-fiber-based extrinsic Fabry–Pérot interferometric strain sensing technology,” Smart Mater. Struct., vol. 4, pp. 246-251, 1995.
[6] Y. Zhao, P. Wang, R. Lv, and X. Liu, “highly sensitive airflow sensor based on Fabry–Pérot interferometer and vernier effect,” J. Lightw. Technol., vol. 34, pp. 5351-5356, 2016.
[7] B. Zhou, C. Lu, B. M. Mao, H. Y. Tam, and S. He, “Magnetic field sensor of enhanced sensitivity and temperature self-calibration based on silica fiber Fabry–Pérot resonator with silicone cavity,” Opt. Express, vol. 25, pp. 8108-8114, 2017.
[8] Y. H. Kim, M. J. Kim, B. S. Rho, M. S. Park, J. H. Jang, and B. H. Lee, “Ultra sensitive fiber-optic hydrogen sensor based on high order cladding mode,” IEEE Sens. J., vol. 11, pp. 1423-1426, 2011.
[9] T. Zhu, D. Wu, M. Liu, and D. W. Duan, “In-line fiber optic interferometric sensors in single-mode fibers,” Sensors, vol. 12, pp. 10430-10449, 2012.
[10] V. Lanticq, M. Quiertant, E. Merliot, and S. Delepine-Lesoille, “Brillouin sensing cable: Design and experimental validation,” IEEE Sens. J., vol. 8, pp. 1194-1201, 2008.
[11] C. Perrotton, N. Javahiraly, M. Slaman, B. Dam, and P. Meyrueis, “Fiber optic surface plasmon resonance sensor based on wavelength modulation for hydrogen sensing,” Opt. Express, vol. 19, pp. A1175-A1183, 2011.
[12] Y. J. Rao and D. A. Jackson, “Principles of fiber-optic interferometry, ” Opt. Fiber Sensor Technol., vol. 5, pp. 167-191, 2000.
[13] K. T. V. Grattan and B. T. Meggitt, Optical Fiber Sensor Technology: Fundamentals, Kluwer Academic Publishers, 2000.
[14] J. M. Vaughan, The Fabry–Pérot Interferometer: History, Therory, Practice, and Applications, Institute of Physics, Bristol, 1989.
[15] R. H. Wang, P. C. Huang, J. W. He, and X. G. Qiao, “Gas refractometer based on a side-open fiber optic Fabry–Perot interferometer, ” Appl. Opt., vol. 56, pp. 50-54, 2017.
[16] M. Z. Jiang and E. Gerhard, “A simple strain sensor using a thin film as a low-finesse fiber-optic Fabry–Pérot interferometer,” Sens. and Actuators A Phys., vol. 88, pp. 41-46, 2001.
[17] S. H. Aref, H. Latifi, M. I. Zibaii, and M. Afshari, “Fiber optic Fabry–Pérot pressure sensor with low sensitivity to temperature changes for downhole application,” Optics Commun., vol. 269, pp. 322-330, 2007.
[18] Y. Rao, J. Jiang, and C. X. Zhou, “Spatial-frequency multiplexed fiber-optic Fizeau strain sensor system with optical amplification,” Sens. and Actuators A Phys., vol. 120, pp. 354-359, 2005.
[19] V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fibre based absolute extrinsic Fabry–Pérot interferometric sensing system,” Meas. Sci. Technol., vol. 7, pp. 58-61, 1996.
[20] Y. Bai, Y. Qi, Y. Dong, and S. Jian, “Highly sensitive temperature and pressure sensor based on Fabry–Pérot interference, ” IEEE Photon. Technol. Lett., vol. 28, pp. 2471-2474, 2016.
[21] Y. Zhao, M. Q. Chen, R. Q. Lv, and F. Xia, “In-fiber rectangular air Fabry–Pérot strain sensor based on high-precision fiber cutting platform, ” Opt. Commun., vol. 384, pp. 107-110, 2017.
[22] X. liu, M. Jiang, Q. Sui, and F. Song, “Temperature sensitivity characteristics of HCPCF-based Fabry–Pérot interometer, ” Opt. Commun., vol. 359, pp. 322-328, 2016.
[23] J. N. Dash and R. Jha, “Fabry–Pérot based strain insensitive photonic crystal fiber modal interferometer for inline sensing of refractive index and temperature, ” Appl. Opt., vol. 54, pp. 10479-10486, 2015.
[24] Y. J. Rao, M. Deng, D. W. Duan, X. C. Yang, T. Zhu, and G. H. Cheng, “Micro Fabry–Pérot interferometers in silica fibers machined by femtosecond laser,” Opt. Express, vol. 15, pp. 14123-14128, 2007.
[25] T. Wei, Y. Han, Y. Li, H.-L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry–Pérot interferometer for highly sensitive refractive index measurement,” Opt. Express, vol. 16, pp. 5764-5769, 2008.
[26] M. Tian, P. Lu, L. Chen, D. Liu, and M. Yang, “Micro multicavity Fabry–Pérot interferometers sensor in SMFs machined by femtosecond laser,” IEEE Photon. Technol. Lett., vol. 25, pp. 1609-1612, 2013.
[27] L. Yuan, J. Huang, X. Lan, H. Wang, L. Jiang, and H. Xiao, “All-in-fiber optofluidic sensor fabricated by femtosecond laser assisted chemical etching,” Opt. Lett., vol. 39, pp. 2358-2361, 2014.
[28] Y. Liu and S. Qu, “Optical fiber Fabry–Pérot interferometer cavity fabricated by femtosecond laser-induced water breakdown for refractive index sensing, ” Appl. Opt., vol. 53, pp. 469-474, 2014.
[29] D.-W. Duan, Y.-J. Rao, and T. Zhu, “High sensitivity gas refractometer based on all-fiber open-cavity Fabry–Pérot interferometer formed by large lateral offset splicing,” J. Opt. Soc. Am. B Opt. Phys., vol. 29, pp. 912-915, 2012.
[30] D. W. Kim, Y. Zhang, K. L. Cooper, and A. Wang, “In-fiber reflection mode interferometer based on a long-period grating for external refractive-index measurement,” Appl. Opt., vol. 44, pp. 5368-5373, 2005.
[31] Y. Zhang, Y. Zhang, Z. Wang, Z. Liu, and Y. Wei, “A noval Michelson Fabry–Pérot hybrid interference sensor based on the micro-structured fiber,” Opt. Commun., vol. 374, pp. 58-63, 2016.
[32] J. T. Zhou, Y. P. Wang, C. R. Liao, B. Sun, J. He, G. L. Yin, S. Liu, Z. Y. Li, G. J. Wang, X. Y. Zhong, and J. Zhao, “Intensity modulated refractive index sensor based on optical fiber Michelson interferometer,” Sens. and Actuators B Chem., vol. 208, pp. 315-319, 2015.
[33] Z. B. Tian and S. S. H. Yam, “In-line single-mode optical fiber interferometric refractive index sensors,” J. Lightw. Technol., vol. 27, pp. 2296-2306, 2009.
[34] R. Huang, K. Ni, Q. Ma, and X. Wu, “Refractometer based on a tapered Mach–Zehender interferometer with peanut-shape structure,” Opt. and Laser in Engin., vol. 83, pp. 80-82, 2016.
[35] Y. Zhao, F. Xia, and J. Li, “Sensitivity-enhanced photonic crystal fiber refractive index sensor with two waist-broadened tapers, ” J. Lightw. Technol., vol. 34, pp. 1373-1379, 2016.
[36] L. Zhang, D. N. Wang, J. Liu, and H. F. Chen, “Simultaneous refractive index and temperature sensing with precise sensing location, ” IEEE Photon. Technol. Lett., vol. 28, pp. 891-894, 2016.
[37] C. Shen, C. Zhong, Y. You, J. Chu, X. Zou, X. Dong, Y. Jin, J. Wang, and H. Gong, “Polarization-dependent curvature sensor based on an in-fiber Mach–Zehnder interferometer with a difference arithmetic demodulation method, ” Opt. Express, vol. 20, pp. 15406-15417, 2012.
[38] L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. J. Chung, “High temperature fiber sensor with high sensitivity based on core diameter mismatch,” Opt. Express, vol. 16, pp. 11369-11375, 2008.
[39] C. Li, T. Ning, J. Li, C. Zhang, C. Zhang, H. Lin, and L. Pei, “Fiber-optic laser sensor based on all-fiber multipath Mach–Zehnder Interferometer, ” IEEE Photon. Technol. Lett., vol. 28, pp. 1908-1911, 2016.
[40] Y. Wang, C. Shen, W. Lou, and F. Shentu, “Polarization-dependent humidity sensor based on an in-fiber Mach–Zehnder interferometer coated with graphene oxide, ” Sens. and Actuators B Chem., vol. 234, pp. 503-509, 2016.
[41] Y. Wang, M. Yang, D. N. Wang, S. Liu, and P. Lu, “Fiber in-line Mach–Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity,” J. Opt. Soc. Am. B Opt. Phys., vol. 27, pp. 370-374, 2010.
[42] X. Y. Sun, D. K. Chu, X. R. Dong, C. Zhou, H. T. Li, L. Zhi, Y. W. Hu, J. Y. Zhou, C. Wang, J. A. Duan, “Highly sensitive refractive index fiber inline Mach–Zehnder interferometer fabricated by femtosecond laser micromachining and chemical etching,” Opts. and Laser Technol., vol. 77, pp. 11-15, 2016.
[43] Z. Y. Li, C. R. Liao, Y. P. Wang, L. Xu, D. N. Wang, X. P. Dong, S. Liu, Q. Wang, K. Yang, and J. Zhou, “Highly-sensitive gas pressure sensor using twincorefiber based in-line Mach–Zehnder interferometer, ” Opt. Express, vol. 23, pp. 15406-15417, 2012.
[44] M. R. K. Soltanian, A. S. Sharbirin, M. M. Ariannejad, I. S. Amiri, R. M. De La Rue, G. Brambilla, B. M. A. Rahman, K. T. V. Grattan, and H. Ahmad, “Variable waist-diameter Mach–Zehnder tapered-fiber interferometer as humidity and temperature sensor, ” IEEE Sens. J., vol. 16, pp. 5987-5992, 2016.
[45] S. C. Gau, W. G. Zhang, H. Zhang, and C. L. Zhang, “Reconfigurable and ultra-sensitive in-line Mach-Zehnder interferometer based on the fusion of microfiber and microfluid, ” Appl. Phys. Lett., vol. 106, pp. 084103-1-084103-5, 2015.
[46] H. Y. Fu, H. Y. Tam, L. Y. Shao, X. Y. Dong, P. K. A. Wai, C. Lu, and S. K. Khijwania, “Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer,” Appl. Opt., vol. 47, pp. 2835-2839, 2008.
[47] B. Xu, C. L. Zhao, F. Yang, H. P. Gong, D. N. Wang, J. X. Dai, and M. H. Yang, “Sagnac interferometer hydrogen sensor based on panda fiber with Pt-loaded WO3/SiO2 coating, ” Opt. Lett., vol. 41, pp. 1594-1597, 2016.
[48] H. Y. Fu, H. Y. Tam, L. Y. Shao, X. Dong, P. K. A. Wai, C. Lu, and S. K. Khijwania, “Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer, ” Opt. Commun., vol. 367, pp. 1-5, 2016.
[49] G. Hernandez, Fabry–Pérot Interferometers. Cambridge University Press, 1986.
[50] F. A. Jenkins and H. E. White, Fundamentals of Optics., McGraw-Hill, NewYork, pp. 286-314, 1957.
[51] A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications., 6th ed., Oxford University Press, 2007.
[52] M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. V. Stryland, Handbook of Optics., 3rd ed., McGraw–Hill, NewYork, 2009.
[53] Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry-Pérot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express, vol. 16, pp. 2252-2263, 2008.
[54] S. Wu, G. Yan, B. Zhou, and E. H. Lee, “Open-cavity Fabry–Pérot interferometer based on etched side-hole fiber for microfluidic sensing, ” Photon. Technol. Lett., vol. 27, pp 1813-1816, 2015.
[55] X. Zou, N. Wu, Y. Tian, J. Ouyang, K. Barringhaus, and X. Wang, “Miniature Fabry–Pérot fiber optic sensor for intravascular blood temperature measurements,” IEEE Sens. J., vol. 13, pp. 2155-2160, 2013.
[56] Z. Y. Feng, J. C. Li, X. G. Qiao, L. Li, H. Z. Yang, and M. L. Hu, “A thermally annealed Mach–Zehnder interferometer for high temperature measurement,” Sensors, vol. 14, pp. 14210-14221, 2014.
[57] G. B. Hocker, “Fiber-optical sensing of pressure and temperature,” Appl. Opt., vol. 18, pp. 1445-1448, 1979.
[58] S. Mc Murtry, J. D. Wright, and D. A. Jackson, “Sensing applications of a low-coherence fibre-optic interferometer measuring the refractive index of air,” Sens. and Actuators B: Chemical, vol. 72, pp. 69-74, 2001.
[59] J. Long, G. Bai-Ou, and W. Huifeng, “Sensitivity characteristics of Fabry–Pérot pressure sensors based on hollow-core microstructured fibers,” J. Lightwave Technol., vol. 31, pp. 2526-2532, 2013.
[60] M. Jun, J. Jian, J. Long, and J. Wei, “A compact fiber-tip micro-cavity sensor for high-pressure measurement,” IEEE Photon. Technol. Lett., vol. 23, pp. 1561-1563, 2011.
[61] C. Liao, S. Liu, L. Xu, C. Wang, Y. Wang, Z. Li, Q. Wang, and D. N. Wang, “Sub-micron silica diaphragmbased fiber-tip Fabry–Pérot interferometer for pressure measurement,” Opt. Lett., vol. 39, pp. 2827-2830, 2014.
[62] J. Ma, W. Jin, H. L. Ho, and J. Y. Dai, “High-sensitivity fiber-tip pressure sensor with graphene diaphragm,” Opt. Lett., vol. 37, pp. 2493-2495, 2012.
[63] F. Xu, D. Ren, X. Shi, C. Li, W. Lu, L. Lu, and B. Yu, “High-sensitivity Fabry–Pérot interferometric pressure sensor based on a nanothick silver diaphragm,” Opt. Lett., vol. 37, pp. 133-135, 2012.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code