Responsive image
博碩士論文 etd-0714117-184303 詳細資訊
Title page for etd-0714117-184303
論文名稱
Title
探討指叉式電極與反射閘極幾何結構對彎曲平板波攝護腺特異抗原生物感測器之影響
Investigation of the Influence of the Geometries and Structures of Interdigital Transducers and Reflective Grating Structures on Flexural Plate-wave based Prostatic Specific Antigen Biosensor
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
87
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-27
繳交日期
Date of Submission
2017-08-14
關鍵字
Keywords
攝護腺特異抗原生物微型感測器、插入損耗、體型微加工技術、彎曲平板波、自我組裝單分子層
Insertion Loss, PSA-biosensors, Self-assembled Monolayers, Bulk Micromachining, Flexural Plate-wave
統計
Statistics
本論文已被瀏覽 5692 次,被下載 14
The thesis/dissertation has been browsed 5692 times, has been downloaded 14 times.
中文摘要
根據衛生福利部國民健康署(Health Promotion Administration, Ministry of Health and Welfare),攝護腺癌為2016年國人男性十大癌症死因排名第6名,並呈現逐年增加之趨勢。攝護腺特異抗原(Prostatic Specific Antigen, PSA)是攝護腺疾病很重要的血清指標,可用在攝護腺癌的臨床診斷及分期,還可以偵測及追蹤手術後治療效果。雖然傳統檢測儀器具有高感測靈敏度與精準度,但因檢測費用高、檢測時間長且體積龐大,不利於居家照護之應用,因此本論文將開發可應用於居家照護之攝護腺特異抗原彎曲平板波(Flexural Plate-wave, FPW)生物感測器。
本論文運用體型微加工技術製作彎曲平板波生物感測元件,製程步驟包含了七次薄膜沉積與五次黃光微影蝕刻,其中為了精準控制彎曲平板波元件感測薄膜的厚度並改善製程良率,本論文採用兩階段非等向性濕式蝕刻來進行背部矽腔體之製作。完成之彎曲平板波元件透過胱胺酸自我組裝單分子層(Self-assembled Monolayers, SAMs)技術將攝護腺特異抗體鍵結於彎曲平板波感測區,以完成攝護腺特異抗原彎曲平板波生物感測器之開發。
本論文所探討不同幾何形狀之指叉式電極(Interdigital Transducers, IDTs)(平行、扇形、圓形)與反射閘極(Reflective Grating Structure, RGS)(無、鋁電極、矽溝槽)彎曲平板波對插入損耗特性之影響。根據網路分析儀量測結果顯示,具矽溝槽RGS結構圓形IDTs之FPW元件有最低之插入損耗(-38.158 dB);但在固態質量感測靈敏度量測上則以具矽溝槽RGS結構平行IDTs之FPW元件有最佳值(100.955 cm2/g)。
最後,將六種不同濃度(2.5、5、10、20、40、80 ng/ml)之攝護腺特異抗原滴定於FPW元件感測區中,以量測該PSA-FPW生物感測元件之偵測極限(Detection Limit)及生物質量感測線性度,其生物偵測極限為2.5 ng/ml,PSA濃度為1~10 ng/ml時R-square=0.999,濃度為10~80時R-square=0.995。綜合上述結果可知,本論文所開發之彎曲平板波攝護腺特異抗原生物微型感測器具有較低之插入損耗、相當低之偵測極限與較高之生物質量感測線性度。
Abstract
According to the report of Health Promotion Administration, Ministry of Health and Welfare, prostate cancer is the sixth leading cause of cancer death in Taiwanese men in 2016. Prostatic Specific Antigen (PSA) is a very important serum of prostate disease. It can be used in the clinical diagnosis of prostate cancer, but also can detect and track the effect of postoperative treatment. Although conventional PSA detectors have high sensitivity and accuracy, their disadvantages of expensive testing chemicals, long detection time and huge size are not suitable for point of care testing (POCT) application. For this reason, this thesis aims to develop a flexural plate-wave (FPW) based PSA biosensor for POCT application.
FPW device was fabricated by utilizing micro-electro mechanical systems (MEMS), the main fabrication steps include seven thin-film depositions and five photolithography processes. To accurately control the thickness of the silicon thin-plate and substantially improve the fabrication yield of FPW transducers, a two-step anisotropic wet etching process was developed. Furthermore, by using cystamine-based self-assembled monolayer (SAM) nanotechnology, we used the proposed FPW device to develop a novel FPW-based PSA biosensor for prostate cancer detection.
The influence of the geometries and structures of the interdigital transducers (IDTs) and reflective grating structures (RGS) on the insertion loss of FPW device are investigated in this thesis. According to the measurement results, FPW device with circular-type IDTs and silicon groove RGS has the lowest insertion loss (-38.158 dB). However, FPW device with parallel-type IDTs and silicon groove RGS has the highest mass sensitivity (100.955 cm2/g).
The detection limit and sensing linearity was measured under six different concentrations of the PSA antigen (2.5, 5, 10, 20, 40 and 80 ng/mL) coated on the backside cavity of the FPW-based PSA biosensor. Under the optimized condition, a low insertion loss (-38.158 dB), very low detection limit (2.5 ng/mL) and high sensing linearity for PSA concentration 1~10 ng/ml and 10~80 ng/ml (0.999, 0.995) can be obtained.
目次 Table of Contents
論文審定書........................................................................................................................... i
誌謝...................................................................................................................................... ii
摘要...................................................................................................................................... iii
Abstract................................................................................................................................ v
目錄...................................................................................................................................... vii
圖目錄.................................................................................................................................. xi
表目錄.................................................................................................................................. xiii
第一章 緒論.......................................................................................................................... 1
1.1研究動機與論文架構........................................................................................................ 1
1.2 文獻回顧......................................................................................................................... 3
1.2.1 生物感測器簡介與分類................................................................................................ 3
1.2.2 聲波感測器種類與比較................................................................................................ 5
第二章 指叉式電極與反射閘極簡介...................................................................................... 12
2.1 指叉式電極之幾何與作用............................................................................................... 12
2.1.1 平行指叉式電極介紹................................................................................................... 12
2.1.2 扇形指叉式電極介紹................................................................................................... 14
2.1.3 圓形指叉式電極介紹................................................................................................... 14
2.2 反射閘極之結構與作用.................................................................................................. 15
2.2.1 無反射閘極結構.......................................................................................................... 15
2.2.2 鋁電極反射閘極結構................................................................................................... 16
2.2.3 矽溝槽反射閘極結構................................................................................................... 17
2.3 反射閘極與指叉式電極之間距離之關係......................................................................... 18
第三章 彎曲平板波攝護腺特異抗原生物感測器之設計與製作............................................. 20
3.1 三種不同幾何之指叉式電極設計................................................................................... 20
3.2 三種不同結構之反射閘極設計...................................................................................... 21
3.3 彎曲平板波攝護腺特異抗原生物感測器製程整合......................................................... 22
3.3.1彎曲平板波元件製作.................................................................................................. 22
3.3.2 攝護腺特異抗原生物感測薄膜研製........................................................................... 35
第四章 實驗結果與討論..................................................................................................... 39
4.1 氧化鋅壓電薄膜之材料特性......................................................................................... 39
4.2 矽基板之KOH蝕刻時間與FPW中心頻率的關係........................................................... 42
4.3 彎曲平板波元件特性量測結果與分析........................................................................... 44
4.3.1 不同幾何形狀指叉式電極對無反射閘極結構彎曲平板波元件之特性影響.................. 44
4.3.2 不同幾何形狀指叉式電極對鋁電極反射閘極結構彎曲平板波元件之特性影響........... 47
4.3.3 不同幾何形狀指叉式電極對矽溝槽反射閘極結構彎曲平板波元件之特性影響 ........... 51
4.3.4 不同反射閘極結構對平行指叉式電極之彎曲平板波元件特性之影響......................... 55
4.3.5 不同反射閘極結構對扇形指叉式電極之彎曲平板波元件特性之影響......................... 57
4.3.6 不同反射閘極結構對圓形指叉式電極之彎曲平板波元件特性之影響......................... 59
4.3.7 不同幾何形狀指叉式電極與不同反射閘極對彎曲平板波元件之特性影響.................. 60
4.4 彎曲平板波元件固態質量感測器特性分析.................................................................... 61
4.5 彎曲平板波攝護腺特異抗原生物感測器特性分析......................................................... 64
第五章 結論與未來展望...................................................................................................... 68
5.1 結論.............................................................................................................................. 68
5.2 未來展望....................................................................................................................... 69
參考文獻............................................................................................................................. 71
參考文獻 References
[1] 衛生福利部國民健康屬,102年癌症登記年報,Available online:https://www.hpa.gov.tw/Pages/List.aspx?nodeid=269 (2016)。
[2] 台灣楓城泌尿協會臺大泌尿部主任蒲永孝教授,PSA攝護腺(前列腺)特異抗原介紹, Available online:https://www.tmua.org.tw/ptEdu-PSA-2.html (2017)。
[3] 高醫醫訊泌尿科主任黃書彬教授,攝護腺特異抗原(PSA)過高的意義, Available online:http://www.kmuh.org.tw/www/kmcj/data/10306/11.htm (2014)
[4] O. Tigli and M. E. Zaghloul, “Design, modeling, and characterization of a novel circular surface acoustic wave device,” IEEE Sens. J. 8, 1807-1815 (2008).
[5] O. Tigli and M. E. Zaghloul, “A novel circular SAW (surface acoustic wave) device in CMOS,” in Proc. IEEE Sens. Conf., pp.474-477, Atlanta, USA (2007).
[6] E. B. Setterington and E. C. Alocilja, “Electrochemical Biosensor for Rapid and Sensitive Detection of Magnetically Extracted Bacterial Pathogens,” Biosens. 2, 15-31 (2012).
[7] S. E. Naimi, B. Hajji, I. Humenyuk, J. Launay, P. Temple-Boyer, “Temperature influence on pH-ISFET sensor operating in weak and moderate inversion regime: Model and circuitry,” Sens. Actuators, B: Chem. 202, 1019-1027 (2014).
[8] G. Marrazza, “Piezoelectric Biosensors for Organophosphate and Carbamate Pesticides: A Review,” Biosens. 4, 301-317 (2014).
[9] R. Vargas-Bernal, G. Herrera-Pérez and E. Rodríguez-Miranda, Pesticides - Advances in Chemical and Botanical Pesticidesl: Chapter 14, InTech, Croatia (2012).
[10] D. S. Ballantine, R. M. White, S. J. Martin, A. J. Ricco, G. C. Frye, E. T. Zellers and H. Wohltjen, Acoustic wave sensors: theory, design, and physico-chemical applications, Academic Press, Inc., San Diego, USA (1997).
[11] D. W. Galipeau, P. R. Story, K. A. Vetelino and R. D. Mileham, “Surface acoustic wave microsensors and applications,” Smart Mater. Struct. 6, 658-667 (1997).
[12] J. W. Gardner, V. K. Varadan and O. O. Awadelkarim, Microsensors MEMS and smart devices, John Wiely & Sons, Inc., New York, USA (2001).
[13] J. Devkota, P. R. Ohodnicki and D. W. Greve, “SAW sensors for chemical vapors and gases,” Sens. 17, 801 (2017).
[14] M. J. Velekoop, “Acoustic wave sensors and their technology,” Ultrason. 36, 7-14 (1998).
[15] M. E. Motamedi and R. M. White, Acoustic Sensor in Semiconductor Sensor, John Wiely & Sons, Inc., New York, USA (1994).
[16] I.-Y. Huang and M.-C. Lee, “Development of a FPW allergy biosensor for human IgE detection by MEMS and cystamine-based SAM technologies,” Sens. Actuators B: Chem. 132, 340-348 (2008).
[17] I.-Y. Huang, M.-C. Lee, C.-H Hsu and C.-C. Wang, “Development of a flexural plate-wave (FPW) immunoglobulin-E (IgE) allergy bio-sensing microsystem,” Sens. Actuators B: Chem. 162, 184-193 (2012).
[18] M.-I. Rocha-Gaso, C. March-Iborra, A. Montoya-Baides and A. Arnau-Vives, “Surface generated acoustic wave biosensors for the detection of pathogens,” Sens. 9, 5740-5769 (2009).
[19] R. M. White and F. W. Voltmer, “Direct piezoelectric coupling to surface elastic waves,” AIP. Appl. Phys. Lett. 7, 314-316 (1965).
[20] J. W. Grate, J. M. Stephen, and M. W. Richard, “Acoustic wave microsensors,” Anal. Chem. 65, 940A-948A (1993).
[21] W. R. Smith, H. M. Gerard, J. H. Collins, T. M. Reeder and H. J. Shaw, “Analysis of interdigital surface wave transducers by use of equivalent circuit model,” IEEE Trans. Microw. Theory Tech. 17, 856-864 (1969).
[22] S. K. R. S. Sankaranarayanan and V. R. Bhethanabotla, “Design of efficient focused surface acoustic wave devices for potential microfluidic applications,” AIP. J. Appl. Phys. 103, 064518 (2008).
[23] S. G. Joshi, B. D. Zaitsev and I. E. Kuznetsova, “Reflection of plate acoustic waves produced by a periodic array of mechanical load strips or grooves,” IEEE Trans. Ultras. Ferr. Freq. Contr. 49, 1730-1734 (2002).
[24] C.-Y Lin, I.-Y. Huang and J.-W. Lan, “Improvement of insertion loss and quality factor of flexural plate-wave based alpha-fetoprotein biosensor using groove-type reflective grating structures,” J. Micro/Nanolith. MEMS MOEMS 12, 013017-1~8 (2013).
[25] I.-Y. Huang, C.-Y. Lin and J.-W. Lan, “Improving thin film ZnO SAW device insertion loss by grooved reflective grating structure,” J. Micro/Nanolith. MEMS MOEMS 12, 013019-1~9 (2013).
[26] 林俊甫,雙埠表面聲波濾波器的模擬與量測,國立成功大學機械工程學研究所碩士論文 (2003)。
[27] W. H. Haydl, B. Dischler and P. Hiesinger, “Multimode SAW resonators-a method to study the optimum resonator design,” in Proc. IEEE Ultrason. Symp., pp.287-296, Annapolis, USA (1976).
[28] 林長佑,甲型胚胎蛋白之彎曲平板波生物感測器研發,國立中山大學電機工程學系博士論文 (2013)。
[29] 陳建霖,具聚焦式反射閘極結構之彎曲平板波元件開發,國立中山大學電機工程學系碩士論文 (2013)。
[30] 呂冠東,具圓弧式指叉轉換器設計之低插入損耗彎曲平板波感測元件開發,國立中山大學電機工程學系碩士論文 (2014)。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code