Responsive image
博碩士論文 etd-0714118-110228 詳細資訊
Title page for etd-0714118-110228
論文名稱
Title
善用感應式通道層的閘極控制PN接面穿隧式場效應電晶體電性分析
Characteristics of Gated-PN iTFETs with Exploiting Induced Channel Layer
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
93
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-27
繳交日期
Date of Submission
2018-08-14
關鍵字
Keywords
雙極性效應、開啟關閉電流比、次臨界擺幅、感應式通道層、能陷輔助穿隧效應、線穿隧
subthreshold swing, trap-assisted tunneling effect, ambipolar effect, line tunneling, induced channel layer, ON/OFF current ratio
統計
Statistics
本論文已被瀏覽 5693 次,被下載 0
The thesis/dissertation has been browsed 5693 times, has been downloaded 0 times.
中文摘要
在本篇論文中我們提出一個新型閘極控制PN感應式穿隧場效應電晶體,其利用源極與閘極間的重疊,大幅增加線穿隧面積,提高元件開啟電流。此線穿隧場效應電晶體善用感應式通道層進而達到更好的次臨界表現,降低能陷輔助穿隧效應及克服雙極性效應。透過利用感應式通道層進行線穿隧的更有效地機制,使感應式穿隧場效應電晶體比傳統PIN穿隧場效應電晶體擁有更好的性能。線穿隧機制在我們的閘極控制PN感應式穿隧場效應電晶體將會有更深入的討論。此外,能陷輔助穿隧效應的影響在我們的元件上也會進一步探討。我們所提出之善用感應式通道層的負型穿隧場效應電晶體(n-iTFET),在外加偏壓Vd = 0.1 V 下,可達到開啟電流1.46 × 10-7 A/μm且開啟關閉電流比達3.57 × 107,達到了最小次臨界擺幅10.5 mV/dec與從閘極電壓為零(VG = 0)到門檻電壓(VG = Vth)平均次臨界擺幅31.8 mV/dec。當我們對元件加入能陷輔助穿隧,負型感應式穿隧場效電晶體(n-iTFET)擁有平均次臨界擺幅51.8 mV/dec與1.35 × 105的開啟關閉電流比。
Abstract
In this thesis we proposed a new type Gated-PN iTFET whose source and gate overlap increases the line tunneling area and improve the on current. It is a new mainly line tunneling field transistor exploiting induced channel layer (iTFETs) to achieve better subthreshold performance, reduced trap-assisted tunneling effect and overcome ambipolar effect. Exploiting the more efficient mechanism, line tunneling via induced channel layer, makes the iTFET have the better performance compared with a conventional point tunneling Gated-PIN TFET. The line tunneling mechanism in this Gated-PN iTFET will be discussed in depth. In addition, the impact of the alleviated trap-assisted tunneling on this new-type device will be further studied. Our proposed n-iTFET reaches 1.46 × 10-7 A/μm of the ON current and 3.57 × 107 of the ON/OFF current ratio under Vd = 0.1 V. A minimum subthreshold swing SSmin = 10.5 mV/dec and the SSavg = 31.8 mV/dec are also obtained from VG = 0 to Vth. As the trap-assisted tunneling is considered, the Gated-PN iTFETs still have an average SS = 51.8 mV/dec over four orders and ON/OFF current ratio of 1.35 × 105.
目次 Table of Contents
中文審定書 i
英文審定書 ii
致 謝 iii
摘 要 iv
Abstract v
Contents vi
List of Figures viii
List of Tables xii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 2
1.3 New Architecture 4
Chapter 2 Device Structure and Fabrication 6
Chapter 3 Device Characteristics 9
3.1 Physical Modeling of Device Simulation 9
3.2 Device Operation Mechanism 10
3.3 Simulation Characteristics 18
3.3.1 Energy Band Diagrams of Point Tunneling and Line Tunneling for Different Structures 18
3.3.2 Gated-PN Tunneling Field Transistor with Exploiting Induced Channel Layer 19
3.3.3 Gated-PN iTFET Dimension Optimization Research 21
3.3.4 Gated-PN iTFET Concentration Modulation Research 23
3.3.5 Discussion on Gated-PN iTFET with Trap-assisted Tunneling 28
3.3.6 Discussion on Gated-PN iTFET with Line Tunneling Enhancement (LTE) Layer 35
3.3.7 Gated-PN iTFET Gate Alignment Discussion 44
3.3.8 Characteristics of Gated-PN iTFET, Gated-PIN iTFET and Traditional TFET 48
3.3.9 Impact of Gox Thickness 52
3.3.10 Inverter and Voltage gain 54
Chapter 4 Conclusion and Future Work 57
4.1 Conclusion 57
4.2 Future Work 59
References 61
Appendix 70
參考文獻 References
[1] G. E. Moore, “Cramming More Components onto Integrated Circuits,” in Proc. IEEE, vol. 86, no. 1, pp. 82-85, Jan. 1998, doi: 10.1109/JPROC.1998.658762.
[2] S. H. Oh, D. Monroe, and J. M. Hergenrother, “Analytic Description of Short-Channel Effects in Fully-Depleted Double-Gate and Cylindrical, Surrounding-Gate MOSFETs,” IEEE Electron Device Lett., vol. 21, no. 9, pp. 445-447, Sep. 2000, doi: 10.1109/55.863106.
[3] K. Roy, S. Mukhopadhyay, and H. M. Meimand, “Leakage Current Mechanisms and Leakage Reduction Techniques in Deep-Submicrometer CMOS Circuits,” in Proc. IEEE, vol. 91, no. 2, pp. 305-327, Feb. 2003, doi: 10.1109/JPROC.2002.808156.
[4] A. M. Ionescu, and H. Riel, “Tunnel field-effect transistors as energy-efficient electronic switches,” Nature, vol. 479, no. 7373, pp. 329-337, Nov. 2011, doi: 10.1038/nature10679.
[5] Q. Xie, J. Xu, and Y. Taur, “Review and Critique of Analytic Models of MOSFET Short-Channel Effects in Subthreshold,” IEEE Trans. Electron Devices, vol. 59, no. 6, pp. 1569-1579, Jun. 2012, doi: 10.1109/TED.2012.2191556.
[6] K. K. Bhuwalka, S. Sedlmaier, A. K. Ludsteck, C. Tolksdorf, J. Schulze and I. Eisele, “Vertical tunnel field-effect transistor,” IEEE Trans. Electron Devices, vol. 51, no. 2, pp. 279-281, Feb. 2004, doi: 10.1109/TED.2003.821575.
[7] P.-F. Wang, K. Hilsenbeck, T. Nirschl, M. Oswald, C. Stepper, M. Weis, and D. Schmitt-Landsiedel, “Complementary tunneling transistor for low power application,” Solid-State Electron., vol. 48, no. 12, pp. 2281-2286, Dec. 2004, doi: 10.1016/j.sse.2004.04.006.
[8] Q. Zhang, W. Zhao, and A. Seabaugh, "Low-subthreshold-swing tunnel transistors", IEEE Electron. Device. Lett., vol. 27, no. 4, pp. 297-300, Apr. 2006, doi: 10.1109/LED.2006.871855.
[9] K. Boucart, and A. M. Ionescu, “Double gate tunnel FET with high-k gate dielectric,” IEEE Trans. Electron Devices, vol. 54, no. 7, pp. 1725-1733, Jul. 2007, doi: 10.1109/TED. 2007.899389.
[10] W.-Y. Choi, B.-G. Park, J.-D. Lee, and T.-J. K. Liu, “Tunneling Field-Effect Transistors (TFETs) With Subthreshold Swing (SS) less than 60 mV/dec,” IEEE Electron Device Letts., vol. 28, no. 8, pp. 743-745, Aug. 2007, doi: 10.1109/LED.2007.901273.
[11] A. C. Seabaugh, and Q. Zhang, “Low-Voltage Tunnel Transistors for Beyond CMOS Logic,” in Proc. IEEE, vol. 98, no. 12, pp. 2095-2110, Dec. 2010, doi: 10.1109/JPROC.2010.2070470.
[12] A. M. Ionescu, L. D. Michielis, N. Dagtekin, G. Salvatore, J. Cao, A. Rusu, and S. Bartsch, “Ultra low power: Emerging devices and their benefits for integrated circuits,” in IEDM Tech. Dig., pp. 16.1.1-16.1.4, Dec. 2011, doi: 10.1109/IEDM.2011.6131563.
[13] B. Ghosh, and M. W. Akram, “Junctionless Tunnel Tield Effect Transistor,” IEEE Electron Device Lett., vol. 34, no. 5, pp. 584-586, May. 2013, doi: 10.1109/LED.2013.2253752.
[14] J. Wu, J. Min, and Y. Taur, “Short-Channel Effects in Tunnel FETs,” IEEE Trans. Electron Devices, vol. 62, no. 9, pp. 3019-3024, Jun. 2015, doi: 10.1109/TED.2015.2458977.
[15] A. Villalon, C. L. Royer, P. Nguyen, S. Barraud, F. Glowacki, A. Revelant, L. Selmi, S. Cristoloveanu, L. Tosti, C. Vizioz, J.-M. Hartmann, N. Bernier, B. Prévitali, C. Tabone, F. Allain, S. Martinie, O. Rozeau, and M. Vinet, “First demonstration of strained SiGe nanowires TFETs with ION beyond 700µA/µm,” in VLSI Tech. Dig., pp. 1-2, Jun. 2014, doi: 10.1109/VLSIT.2014.6894369.
[16] G. Dewey, B. Chu-Kung, J. Boardman, J. M. Fastenau, J. Kavalieros, R. Kotlyar, W. K. Liu, D. Lubyshev, M. Metz, N. Mukherjee, P. Oakey, R. Pillarisetty, M. Radosavljevic, H. W. Then, and R. Chau, “Fabrication, characterization, and physics of III-V heterojunction tunneling field effect transistors (H-TFET) for steep sub-threshold swing,” in IEDM Tech. Dig., pp. 33.6.1–33.6.4, Dec. 2011, doi: 10.1109/IEDM.2011.6131666.
[17] R. Pandey, H. Madan, H. Liu, V. Chobpattana, M. Barth, B. Rajamohanan, M. J. Hollander, T. Clark, K. Wang, J.-H. Kim, D. Gundlach, K. P. Cheung, J. Suehle, R. Engel-Herbert, S. Stemmer, and S. Datta, “Demonstration of p-type In0.7Ga0.3As/GaAs0.35Sb0.65 and n-type GaAs0.4Sb0.6/In0.65Ga0.35As Complimentary Heterojunction Vertical Tunnel FETs for Ultra-Low Power Logic,” in VLSI Tech. Dig., pp. T206-T207, Jun. 2015, doi: 10.1109/ VLSIT.2015.7223676.
[18] S. Blaeser, S. Glass, C. Schulte-Braucks, K. Narimani, N. V. D. Driesch, S. Wirths, A. T. Tiedemann, S. Trellenkamp, D. Buca, Q. T. Zhao* , and S. Mantl , “Novel SiGe/Si line tunneling TFET with high Ion at low VDD and constant SS,’’ in IEDM Tech. Dig., pp. 22.3.1 - 22.3.4, Dec. 2015, doi: 10.1109/IEDM.2015.7409757.
[19] E. Memišević, J. Svensson, M. Hellenbrand, E. Lind, and L. E. Wernersson, “Scaling of Vertical InAs–GaSb Nanowire Tunneling Field-Effect Transistors on Si, ’’ IEEE Electron Device Lett., vol. 37, no. 5, pp. 549-552, May. 2016, doi: 10.1109/LED.2016.2545861.
[20] H. Schmid, D. Cutaia, J. Gooth, S. Wirths, N. Bologna*, K. E. Moselund and H. Riel, “Monolithic integration of multiple III-V semiconductors on Si for MOSFETs and TFETs,” in IEDM Tech. Dig., pp. 3.6.1 - 3.6.4, Dec. 2016, doi: 10.1109/IEDM.2016.7838340.
[21] H. Zhang, W. Cao, J. Kang, and K. Banerjee, “Effect of Band-Tails on the Subthreshold Performance of 2D Tunnel-FETs,” in IEDM Tech. Dig., pp. 30.3.1 - 30.3.4, Dec. 2016, doi: 10.1109/IEDM.2016.7838512.
[22] O. M. Nayfeh, C. N. Chleirigh, J. Hennessy, L. Gomez, J. L. Hoyt, and D. A. Antoniadis, “Design of tunneling field-effect transistors using strained-silicon/strained-germanium type-II staggered heterojunctions,” IEEE Electron Device Lett., vol. 29, no. 9, pp. 1074-1077, Sep. 2008, doi: 10.1109/LED.2008.2000970.
[23] S.-W. Kim, J.-H. Kim, T-J.-K. Liu, W.-Y. Choi, and B.-G. Park, “Demonstration of L-Shaped Tunneling Field-Effect Transistors,” IEEE Trans. Electron Devices, vol. 63, no. 4, pp. 1774-1778, Apr. 2016, doi: 10.1109/TED.2015.2472496.
[24] Q.-Q. Huang, R.-D. Jia, J.-D. Zhu, Z. Lv, J.-X. Wang, C. Chen, Y. Zhao, R.-S. Wang, W.-H. Bu, W.-B. Wang, J. Kang, K.-L. Hua, H.-M. Wu, S.-F. Yu, Y-Y. Wang, and R. Huang, “Deep Insights into Dielectric Breakdown in Tunnel FETs with Awareness of Reliability and Performance Co-Optimization,” in IEDM Tech. Dig., pp. 31.5.1 - 31.5.4, Dec. 2016, doi: 10.1109/ IEDM.2016.7838521.
[25] E.-H. Toh, G.-H. Wang, L. Chan, G. Samudra, and Y.-C. Yeo, “Device physics and guiding principles for the design of double-gate tunneling field effect transistor with silicon-germanium source heterojunction,” Appl. Phys. Lett., vol.91, no.24, pp.243505-1 - 243505-3, Dec. 2007, doi: 10.1063/1.2823606.
[26] Y. Morita, T. Mori, S. Migita, W. Mizubayashi, A. Tanabe, K. Fukuda, T. Matsukawa, K. Endo, S. O’uchi, Y.-X. Liu, M. Masahara, and H. Ota, “Performance Enhancement of Tunnel Field-Effect Transistors by Synthetic Electric Field Effect,” IEEE Electron Device Lett., vol. 35, no. 7, pp. 792 - 794, Jul. 2014, doi: 10.1063/1.2823606.
[27] A. M. Walke, A. Vandooren, B. Kaczer, A. S. Verhulst, R. Rooyackers, E. Simoen, M. M. Heyns, V. R. Rao, G. Groeseneken, N. Collaert, and A. V.-Y. Thean, “Part II: Investigation of Subthreshold Swing in Line Tunnel FETs Using Bias Stress Measurements,” IEEE Trans. Electron Devices, vol. 60, no. 12, pp. 4065-4072, Dec. 2013, doi: 10.1109/TED.2013.2287253.
[28] Q. Huang, Z. Zhan, R. Huang, X. Mao, L. Zhang, Y. Qiu, and Y. Wang, “Self-depleted T-gate Schottky barrier tunneling FET with low average subthreshold slope and high ION/IOFF by gate configuration and barrier modulation,” in IEDM Tech. Dig., pp. 16.2.1-16.2.4, Dec. 2011, doi: 10.1109/ IEDM.2011.6131564.
[29] F. Mayer, C. Le Royer, J.-F. Damlencourt, K. Romanjek, F. Andrieu, C. Tabone, B. Previtali, and S. Deleonibus, “Impact of SOI, Si1-xGexOI and GeOI substrates on CMOS compatible Tunnel FET performance,” in IEDM Tech. Dig., pp.1-5, Dec. 2008, doi: 10.1109/ IEDM.2008.4796641.
[30] S. Migita, K. Fukuda, Y. Morita, and H. Ota, “Experimental Demonstration of Temperature Stability of Si-Tunnel FET over Si-MOSFET,” IEEE Silicon Nanoelectronics Workshop., pp.1-2, Jun. 2012, doi: 10.1109/SNW.2012.6243315.
[31] Sentaurus™ Structure Editor User Guide, Synopsys International Inc., Jun. 2015.
[32] Sentaurus™ Device User Guide, Synopsys International Inc., Jun. 2015.
[33] N. N. Mojumder, and K. Roy, “Band-to-Band Tunneling Ballistic Nanowire FET: Circuit-Compatible Device Modeling and Design of Ultra-Low-Power Digital Circuits and Memories,” IEEE Trans. Electron Devices, vol. 56, no. 10, pp. 2193-2201, Oct. 2009, doi: 10.1109/TED.2009.2028394.
[34] C. H. Shih, and N. V. Kien, “Sub-10-nm Asymmetric Junctionless Tunnel Field-Effect Transistors,” IEEE J. Electron Devices Soc., vol. 2, no. 5, pp. 128-132, Jun. 2014, doi: 10.1109/JEDS.2014.2330501.
[35] D. B. Abdi, and M. J. Kumar, “Controlling Ambipolar Current in Tunneling FETs Using Overlapping Gate-on-Drain,” IEEE J. Electron Devices Soc., vol. 2, no. 6, pp. 187-190, Nov. 2014, doi: 10.1109/JEDS.2014.2327626.
[36] W. G. Vandenberghe, A. S. Verhulst, G. Groeseneken, B. Soree, and W. Magnus, “Analytical Model for Point and Line Tunneling in a Tunnel Field-Effect Transistor,” in Proc. Int. Conf. Simulation of Semiconductor Processes and Devices (SISPAD), pp. 137-140, Sep. 2008, doi: 10.1109/SISPAD.2008.4648256.
[37] Y.-X. Qiu, R.-S. Wang, Q.-Q. Huang, and R. Huang, “A Comparative Study on the Impacts of Interface Traps on Tunneling FET and MOSFET,” IEEE Electron Device Lett., vol. 61, no. 5, pp. 1284-1291, May. 2014, doi: 10.1109/TED.2014.2312330.
[38] S.-C. Fan, S. Teehan, K. Chung, A. Varghese, M. Lenhardt, P. Montanini, S. Skordas, B. Haran, S. Tsai, and R. Xie, “Gas cluster ion beam processing for improved self-aligned contact yield at 7 nm node FinFET: MJ: MOL and junction interfaces,” Annual SEMI Advanced Semiconductor Manufacturing Conference., pp. 208-210, Jun. 2018, doi: 10.1109/ASMC.2018.8373209.
[39] L. Knoll, Q.-T. Zhao, A. Nichau, S. Trellenkamp, S. Richter, A. Schäfer, D. Esseni, L. Selmi, K. K. Bourdelle, and S. Mantl, “Inverters With Strained Si Nanowire Complementary Tunnel Field-Effect Transistors,” IEEE Electron Device Lett., vol. 34, no. 6, pp. 813–815, May. 2013, doi: 10.1109/LED.2013.2258652.
[40] S. D. Vusser, J. Genoe, and P. Heremans, “Influence of Transistor Parameters on the Noise Margin of Organic Digital Circuits,” IEEE Trans. Electron Devices, vol. 53, no. 4, pp. 601-610, Apr. 2006, doi: 10.1109/LED.2006.870876.
[41] F. Chen, H. Ilatikhameneh, Y. Tan, G. Klimeck, and R. Rahman, “Switching Mechanism and the Scalability of Vertical-TFETs,” IEEE Trans. Electron Devices, vol. 65, no. 7, pp. 3065-3068, Jul. 2018, doi: 10.1109/TED.2018.2831688.
[42] Y. Guan, Z. Li, W. Zhang, Y. Zhang, and F. Liang, “An Analytical Model of Gate-All-Around Heterojunction Tunneling FET,” IEEE Trans. Electron Devices, vol. 65, no. 2, pp. 776-782, Feb. 2018, doi: 10.1109/TED.2017.2783911.
[43] P. K. Dubey, and B. K. Kaushik, “T-Shaped III-V Heterojunction Tunneling Field-Effect Transistor,” IEEE Electron Device Lett., vol. 64, no. 8, pp. 3120-3125, Aug. 2017, doi: 10.1109/TED.2017.2715853.
[44] W. Cao, J. Kang, D. Sarkar, W. Liu, and K. Banerjee, “2D Semiconductor FETs—Projections and Design for Sub-10 nm VLSI,” IEEE Trans. Electron Devices, vol. 62, no. 11, pp. 3459-3469, Nov. 2015, doi: 10.1109/TED.2015.2443039.
[45] F. A. McGuire, Y.-C. Lin, K. Price , G. B. Rayner, S. Khandelwal, S. Salahuddin, and A. D. Franklin, “Sustained Sub-60 mV/decade Switching via the Negative Capacitance Effect in MoS2 Transistors,” Nano Lett., vol. 17, no. 8, pp. 4801-4806, Jul. 2017, doi: 10.1021/acs.nanolett.7b01584.

Appendix
[1] Berlin, and Leslie, The Man Behind the Microchip: Robert Noyce and the Invention of Silicon Valley, New York: Oxford University Press, 2005.
[2] L. Esaki, “New Phenomenon in Narrow Germanium p-n Junctions,” American Physical Society, vol. 109, no. 2, pp. 603-604, Jan. 1958, doi: 10.1103/PhysRev.109.603.
[3] L. Esaki, “Discovery of the tunnel diode,” IEEE Trans. Electron Devices, vol. 23, no. 7, pp. 644-647, Jul. 1976, doi: 10.1109/T-ED.1976.18466.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code