Responsive image
博碩士論文 etd-0714118-163047 詳細資訊
Title page for etd-0714118-163047
論文名稱
Title
運用於低功耗應用且具有蕭特基接觸與抬高本體之無摻雜式的1T-DRAM
Doping-less 1T-DRAM With Schottky Contact and Raised Body For Low Power Application
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
75
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-27
繳交日期
Date of Submission
2018-08-20
關鍵字
Keywords
蕭特基之源極和汲極、抬高本體、無電容式、無摻雜式、單電晶體動態隨機存取記憶體
Raised Body, Schottky Source/Drain, Capacitorless, Doping-less, 1T-DRAM
統計
Statistics
本論文已被瀏覽 5666 次,被下載 2
The thesis/dissertation has been browsed 5666 times, has been downloaded 2 times.
中文摘要
在本論文中,我們提出一個新穎性之具有抬高本體且蕭特基接觸的源極和汲極 (Schottky Contact S/D)的無摻雜及無電容式單電晶體動態隨機存取記憶體(Doping-Less One-Transistor Dynamic Random Access Memory, DL 1T-DRAM)之架構。無摻雜式元件最大的好處是不需額外離子佈植(Ion Implantation)能免除一些問題,例如:隨機摻雜擾動(Random Dopant Fluctuations)和熱預算(Thermal Budget)。藉由蕭特基能障(Schottky barrier)形成源極和汲極區域,而利用熱離子放射(thermionic emission)產生出額外的電子或電洞,可用於nMOS或pMOS。
根據模擬結果顯示,在我們元件的閘極長度(Gate Length)為10 nm時,可程式規劃窗(Programming Window)為28.7 µA/um與資料保存時間(Retention Time)在室溫可達到466 ms而在高溫85 °C也可達到79 ms。然而元件在低偏壓操作下,寫入速度仍然可達到4奈秒,我們探討了各個記憶體操作狀態下的功率消耗。而更進一步研究在閘極不同功函數下功率消耗的表現,透過功函數偏移降低操作電流達成低功率消耗的應用。在我們所設計元件在未來物聯網(IoT)時代能符合低功耗應用的趨勢。
Abstract
In this thesis, we propose a novel structure of Doping-less 1T-DRAM with raised body and Schottky contact S/D. As the device has not any physical doping, it is expected to be free from problems associated with random dopant fluctuations and thermal budget. The source and drain regions are formed by the Schottky barrier which uses mechanism of thermionic emission that generates additional electrons and holes for nMOS and pMOS respectively. Our simulation results show that programming window is 28.7 µA/um at gate length of 10 nm with the retention time of 466 ms at 27 °C and 79 ms at 85 °C can be achieved for our doping-less 1T-DRAM. In addition, low operating biases can result in a short of programming time of 4 ns. Furthermore, we research the performance of different gate work function and work function shift can be achieved for low power application in the nearest future.
目次 Table of Contents
中文審定書 i
英文審定書 ii
致謝 iii
摘要 iv
Abstract v
Contents vi
List of Figures ix
List of Tables xii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 5
Chapter 2 Principle of Operation 7
2.1 Floating Body Effect 7
2.2 Mechanism of Writing of 1T-DRAM 9
2.2.1 Mechanism of Impact Ionization 9
2.2.2 Mechanism of GIDL 11
Chapter 3 Device Design and Fabrication 13
3.1 Process Flow of the Device 13
Chapter 4 Results and Discussion 16
4.1 Models of Physical Mechanism 16
4.2 The structure of Doping-less 1T-DRAM 16
4.3 Operation of Doping-less 1T-DRAM 19
4.4 I-V Characteristics 21
4.5 Programming Window 23
4.6 Retention Time 24
4.7 S/D Metal Materials with Schottky Barrier Contact 25
4.8 Write Time 27
4.9 Influence of Temperature 29
4.10 Power Consumption 30
4.11 Disturbance Immunity 34
4.12 Scalability 36
4.13 Benchmark 38
Chapter 5 Conclusion and Future Work 40
5.1 Conclusion 40
5.2 Future Work 42
Reference 43
Appendix 57
參考文獻 References
[1] G. E. Moore, “Cramming more components onto integrated circuits,” Proc. IEEE, vol. 86, no.1, pp.82-85, Jan. 1998, doi: 10.1109/JPROC.1998.658762.
[2] C. Maleville, “Engineered substrates for Moore and more than Moore’s law: Device scaling: Entering the substrate era,” in IEEE SOI-3D-Subthreshold Microelectronics Tech. Unified Conf. (S3S), pp. 1-5, Oct. 2015, doi: 10.1109/S3S.2015.7333494.
[3] Y. Halawani, B. Mohammad, D. Homouz, M. Al-Qutayri, and H, Saleh, “Modeling and Optimization of Memristor and STT-RAM-Based Memory for Low-Power Applications,” in IEEE Trans. VLSI Systems, pp. 1003–1014, Jun. 2015, doi: 10.1109/TVLSI.2015.2440392.
[4] Y.-J. Kim, and W.–Y. Choi, “Nonvolatile Nanoelectromechanical Memory Switches for Low-Power and High-Speed Field-Programmable Gate Arrays,” IEEE Trans. Electron Devices, vol. 62, no. 2, pp. 673-679, Feb. 2015, doi: 10.1109/TED.2014.2380992.
[5] C. Sahu, and J. Singh, “Potential Benefits and Sensitivity Analysis of Dopingless Transistor for Low Power Applications,” IEEE Trans. Electron Devices, vol. 62, no. 3, pp. 729-735, Mar. 2015, doi: 10.1109/TED.2015.2389900.
[6] B.-D Yang, “Low-Power Effective Memory-Size Expanded TCAM Using Data-Relocation Scheme,” IEEE Solid-State Circuits, vol. 50, no. 10, pp. 2441-2450, Oct. 2015, doi: 10.1109/JSSC.2015.2457908.
[7] K. Zaitsu, K. Tatsumura, M. Matsumoto, M. Oda, and S. Yasuda, “Nonvolatile Programmable Switch With Adjacently Integrated Flash Memory and CMOS Logic for Low-Power and High-Speed FPGA,” IEEE Trans. Electron Devices, vol. 62, no. 12, pp. 4009-4014, Dec. 2015, doi: 10.1109/TED.2015.2486802.
[8] M. Sako, Y. Watanabe, T. Nakajima, J. Sato, K. Muraoka, M. Fujiu, F. Kono, M. Nakagawa, M. Masuda, K. Kato, Y. Terada, Y. Shimizu, M. Honma, A. Imamoto, T. Araya, H. Konno, T. Okanaga, T. Fujimura, X. Wang, M. Muramoto, M. Kamoshida, M. Kohno, Y. Suzuki, T. Hashiguchi, T. Kobayashi, M. Yamaoka, and R. Yamashita, “A Low Power 64 Gb MLC NAND-Flash Memory in 15 nm CMOS Technology,” IEEE Solid-State Circuits, vol. 51, no. 1, pp. 196-203, Jan. 2016, doi: 10.1109/JSSC.2015.2458972.
[9] K. Kim, C.-G. Hwang, and J. G. Lee, “DRAM technology Perspective for Gigabit era,” IEEE Trans. Electron Devices, vol. 45, no. 3, pp. 598-608, Mar. 1998, doi: 10.1109/16.661221.
[10] K.-W. Chang, D. Lee, Z. Chishti, R. Alameldeen, C. Wilkerson, Y. Kim, and O. Mutlu, “Improving DRAM Performance by Parallelizing Refreshes with Accesses,” in IEEE 20th int. Symp. on High Performance Computer Architecture (HPCA), pp. 356-367, Feb. 2014, doi: 10.1109/HPCA.2014.6835946.
[11] A. Nitayama, Y. Kohyama, and K. Hieda, “Future Directions for DRAM Memory Cell Technology,” in IEDM Tech. Dig., pp. 355-358, Dec. 1998, doi: 10.1109/IEDM.1998.746373.
[12] H. P. Moll, J. Hartwich, A. Scholz, D. Temmler, A. P. Graham, S. Slesazek, G. Wedler, L. Heineck, T. Mono, U. Zimmermann, K. Schupke, F. Ludwig, I. Park, T. Tran, and W. Müller, “Self-Alignment Techniques to enable 40nm Trench Capacitor DRAM Technologies with 3-D Array Transistor and Single-Sided Strap,”in IEEE VLSI Tech., pp. 188-189, Jun. 2007, doi: 10.1109/VLSIT.2007.4339687.
[13] Y.-H. Wu, C.-M. Chang, C.-Y. Wang, C.-K. Kao, C.-M. Kuo, A. Ku, and T. Huang, “Augmented Cell Performance of NO-Based Storage Dielectric by N2O-Treated Nitride Film for Trench DRAM,” IEEE Electron Device Lett., vol. 29, no. 2, pp. 149-151, Feb. 2008, doi: 10.1109/LED.2007.914082.
[14] T. Kaga, T. Kure, H. Shinriki, Y. Kawamoto, F. Murai, T. Nishida, Y. Nakagome, D. Hisamoto, T. Kisu, E. Takeda, and K. Itoh, “Crown-shaped stacked-capacitor cell for 1.5-V operation 64-Mb DRAMs,” IEEE Trans. Electron Devices, vol. 38, no. 2, pp. 255-261, Feb. 1991, doi: 10.1109/16.69903.
[15] M. Kawano, N. Takahashi, Y. Kurita, K. Soejima, M. Komuro, and S. Matsui, “Three-Dimensional Packaging Technology for Stacked DRAM With 3-Gb/s Data Transfer,” IEEE Trans. Electron Devices, vol. 55, no. 7, pp. 1614-1620, Jul. 2008, doi: 10.1109/TED.2008.924068.
[16] H.-j. Wann, and C. Hu, “A capacitorless DRAM cell on SOI substrate,” in IEDM Tech. Dig., pp. 635-638, Dec. 1993, doi: 10.1109/IEDM.1993.347280.
[17] S. Okhonin, M. Nagoga, J. M. Sallese, and P. Fazan, “A SOI capacitor-less 1T-DRAM concept,” in IEEE Int. SOI Conf., pp. 153-154, Oct. 2001, doi: 10.1109/SOIC.2001.958032.
[18] A. Wei, M. J. Sherony, and D. A. Antoniadis, “Effect of Floating-Body Charge on SOI MOSFET Design,” IEEE Trans. Electron Devices, vol. 45, no. 2, pp. 430-438, Feb. 1998, doi: 10.1109/16.658677.
[19] M. Sarajli, and R. Ramovi, “Analytical Modeling of the Triggering Drain Voltage at the Onset of the Kink Effect for PD SOI NMOS,” in 25th Int. Conf. on Microelecronics, pp. 325-328, May. 2006, doi: 10.1109/ICMEL.2006.1650964.
[20] G. Hiblot, Q. Rafhay, F. Boeuf, and G. Ghibaudo, “Impact of short-channel effects on velocity overshoot in MOSFET,” in IEEE 13th Int. New Circuits and Systems Conf., pp. 1-4, Jun. 2015, doi: 10.1109/NEWCAS.2015.7182061.
[21] T. Tanaka, E. Yoshida, and T. Miyashita, “Scalability study on a capacitorless 1T-DRAM: from single-gate PD-SOI to double-gate FinDRAM,” IEDM Tech. Dig., pp. 919-922, Dec. 2004, doi: 10.1109/IEDM.2004.1419332.
[22] M.-K. Jeong, K.-H. Park, H.-I. Kwon, S.-H. Kong, and J.-H. Lee, “Vertical double-gate structure with nonvolatile charge storage node for 1T-DRAM cell device,” in IEEE Silicon Nanoeletronic Workshop, pp. 1-2, Jun. 2008, doi: 10.1109/SNW.2008.5418384.
[23] G. Kim, S. W. Kim, J. Y. Song, J. P. Kim, K.-C. Ryoo, J.-H. Oh, J. H. Park, H. W. Kim, and B.-G. Park, “Body-raised double-gate structure for 1T DRAM,” in IEEE Nanotechnology Materials and Devices Conf., pp. 259-263, Jun. 2009, doi: 10.1109/NMDC.2009.5167556.
[24] J.-W. Han, S.-W. Ryu, D.-H. Kim, C.-J. Kim, S. Kim, D.-I. Moon, S.-J. Choi, and Y.-K. Choi, “Fully Depleted Polysilicon TFTs for Capacitorless 1T-DRAM,” IEEE Electron Device Lett., vol. 30, no. 7, pp. 742-744, Jul. 2009, doi: 10.1109/LED.2009.2022343.
[25] G. Giusi, M. A. Alam, F. Crupi, and S. Pierro, “Bipolar Mode Operation and Scalability of Double-Gate Capacitorless 1T-DRAM Cells,” IEEE Trans. Electron Devices, vol. 57, no. 8, pp. 1743-1750, Aug. 2010, doi: 10.1109/TED.2010.2050104.
[26] N. Collaert, M. Aoulaiche, B. D. Wachter, M. Rakowski, A. Redolfi, S. Brus, A. D. Keersgieter, N. Horiguchi, L. Altimime, and M. Jurczak, “A low-voltage biasing scheme for aggressively scaled bulk FinFET 1T-DRAM featuring 10s retention at 85°C,” in IEEE VLSI Tech., pp. 161-162, Jun. 2010, doi: 10.1109/VLSIT.2010.5556211.
[27] D.-I. Moon, S.-J. Choi, J.-W. Han, S. Kim, and Y.-K. Choi, “Fin-Width Dependence of BJT-Based 1T-DRAM Implemented on FinFET,” IEEE Electron Device Lett., vol. 31, no. 9, pp. 909–911, Sep. 2010, doi: 10.1109/LED.2010.2052015.
[28] Y.-C. Wang, J.-T. Lin, P.-H. Lin, S.-C. Tseng, H.-P. Hsu, D.-R. Lu, Y.-H. Lin, J.-M. Syu, and Z.-H. Huang, “Novel 1T-dram with fin-gate and pillar structure for hole storage and data retention time improvement,” in IEEE Int. Conf. Solid-State and Integrated Circuit Tech., pp. 1–3, Oct. 2014, doi: 10.1109/ICSICT.2014.7021376.
[29] D.-I. Moon, J.-Y. Kim, H. Jang, H.-J. Hong, C. K. Kim, J.-S. Oh, M.-H. Kang, J.-W. Kim, and Y.-K. Choi, “A Novel FinFET With High-Speed and Prolonged Retention for Dynamic Memory,” IEEE Electron Device Lett., vol. 35, no. 12, pp. 1236–1238, Dec. 2014, doi: 10.1109/LED.2014.2365235.
[30] J.-T. Lin, P.-H Lin, Y.-C Eng, and Y.-R Chen, “Novel Vertical SOI-Based 1T-DRAM With Trench Body structure,” IEEE Trans. Electron Devices, vol. 60, no. 6, pp. 1872-1877, Jun. 2013, doi: 10.1109/TED.2013.2259171.
[31] A. Pal, A. Nainani, and K. C. Saraswat, “Addressing key challenges in 1T-DRAM: Retention time, scaling and variability — Using a novel design with GaP source-drain,” in IEEE Int. Conf. Simulation of Semiconductor Proc. and Devices (SISPAD), pp. 376–379, Sep. 2013, doi: 10.1109/SISPAD.2013.6650653.
[32] D.-I. Moon, J.-Y. Kim, J.-B. Moon, D.-O. Kim, and Y.-K. Choi, “Evolution of Unified-RAM: 1T-DRAM and BE-SONOS Built on a Highly Scaled Vertical Channel,” IEEE Trans. Electron Devices, vol. 61, no. 1, pp. 60-65, Jan. 2014, doi: 10.1109/TED.2013.2292316.
[33] J.-T. Lin, and P.-H. Lin, “Multifunction Behavior of a Vertical MOSFET With Trench Body Structure and New Erase Mechanism for Use in 1T-DRAM,” IEEE Trans. Electron Devices, vol. 61, no. 9, pp. 3172-3178, Sep. 2014, doi: 10.1109/TED.2014.2336533.
[34] J.-T. Lin, P.-H. Lin, S. W. Haga, Y.-C. Wang, and D.-R. Lu, “Transient and Thermal Analysis on Disturbance Immunity for 4F2 Surrounding Gate 1T-DRAM With Wide Trenched Body,” IEEE Trans. Electron Devices, vol. 62, no. 1, pp. 61-68, Jan. 2015, doi: 10.1109/TED.2014.2372789.
[35] N. Z. Butt, and M. A. Alam, “Scaling Limits of Double-Gate and Surround-Gate Z-RAM Cells,” IEEE Trans. Electron Devices, vol. 54, no. 9, pp. 2255-2262, Sep. 2007, doi: 10.1109/TED.2007.902691.
[36] M. Galeti, M. Rodrigues, J. A. Martino, N. Collaert, E. Simoen, M. Aoulaiche, M. Jurczak, and C. Claeys, “BJT effect analysis in p- and n-SOI MuGFETs with high-k gate dielectrics and TiN metal gate electrode for a 1T-DRAM application,” in IEEE Int. SOI Conf., pp. 1-2, Oct. 2011, doi: 10.1109/SOI.2011.6081720.
[37] J.-S. Shin, H. Choi, H. Bae, J. Jang, D. Yun, E. Hong, D.-H. Kim, and D.-M. Kim, “Vertical-Gate Si/SiGe Double-HBT-Based Capacitorless 1T DRAM Cell for Extended Retention Time at Low Latch Voltage,” IEEE Electron Device Lett., vol. 33, no. 2, pp. 134-136, Feb. 2012, doi: 10.1109/LED.2011.2174025.
[38] A. Pal, A. Nainani, Z. ye, X. Bao, E. Sanchez, and K. C. Saraswat, “GaP source-drain SOI 1T-DRAM: Solving the key technological challenges,” in IEEE SOI-3D-Subthreshold Microelectronics Tech. Unified Conf., pp. 1-2, Oct. 2013, doi: 10.1109/S3S.2013.6716573.
[39] N. Rodriguez, S. Cristoloveanu, and F. Gamiz, “A-RAM: Novel capacitor-less DRAM memory,” IEEE Electron Device Lett., vol.31, no.9, pp. 972-974, Nov. 2009, doi: 10.1109/SOI.2009.5318734.
[40] N. Rodriguez, F. Gamiz, and S. Cristoloveanu, “A-RAM Memory Cell: Concept and Operation,” IEEE Electron Device Lett., vol. 31, no. 9, pp. 972-974, Sep. 2010, doi: 10.1109/LED.2010.2055531.
[41] N. Rodriguez, S. Cristoloveanu, and F. Gamiz, “Novel Capacitorless 1T-DRAM Cell for 22-nm Node Compatible With Bulk and SOI Substrates,” IEEE Trans. Electron Devices, vol. 58, no. 8, pp. 2371-2377, Aug. 2011, doi: 10.1109/TED.2011.2147788.
[42] F. Gamiz, and N. Rodriguez, “A 20nm low-power triple-gate multibody 1T-DRAM cell,” in Proc. Tech. Program of 2012 VLSI Tech., Systems and Applications, pp. 1-2, Apr. 2012, doi: 10.1109/VLSI-TSA.2012.6210166.
[43] N. Rodriguez, C. Navarro, F. Gamiz, F. Andrieu, O. Faynot, and S. Cristoloveanu, “Experimental Demonstration of Capacitorless A2RAM Cells on Silicon-on-Insulator,” IEEE Electron Device Lett., vol.33, no.12, pp.1717-1719, Dec. 2012, doi: 10.1109/LED.2012.2221074.
[44] F. Gamiz, N. Rodriguez, C. Marquez, C. Navarro, and S. Cristoloveanu, “A2RAM: Low-power 1T-DRAM memory cells compatible with planar and 3D SOI substrates,” in IEEE SOI-3D-Subthreshold Microelectronics Tech. Unified Conf., pp. 1-2, Oct. 2014, doi: 10.1109/S3S.2014.7028229.
[45] C.-W. Lee, R. Yan, I. Ferain, A. Kranti, N. D. Akhavan, P. Razavi, R. Yu, and J. P. Colinge, “Nanowire zero-capacitor DRAM transistors with and without junctions,” in IEEE Conf. Nanotechnology, pp. 242-245, Aug. 2010, doi: 10.1109/NANO.2010.5697888.
[46] M. Lee, T. Moon, and S. Kim, “Floating Body Effect in Partially Depleted Silicon Nanowire Transistors and Potential Capacitor-Less One-Transistor DRAM Applications,” IEEE Trans. Nanotechnology, vol. 11, no. 2, pp. 355-359, Mar. 2012, doi: 10.1109/TNANO.2011.2175942.
[47] Z. Lu, J. G. Fossum, W. Zhang, V. P. Trivedi, L. Mathew, and M. Sadd, “A Novel Two-Transistor Floating-Body/Gate Cell for Low-Power Nanoscale Embedded DRAM,” IEEE Trans. Electron Devices, vol. 55, no. 6, pp. 1511-1518, Jun. 2008, doi: 10.1109/TED.2008.922796.
[48] A. Biswas, and A. M. Ionescu, “Study of fin-tunnel FETs with doped pocket as capacitor-less 1T DRAM,” in IEEE SOI-3D-Subthreshold Microelectronics Tech. Unified Conf., pp. 1-2, Oct. 2014, doi: 10.1109/S3S.2014.7028203.
[49] J. M. Larson and J. P. Snyder, “Overview and status of metal S/D Schottky-barrier MOSFET technology,” IEEE Trans. Electron Devices, vol. 53, no. 5, pp. 1048–1058, May 2006, doi: 10.1109/TED.2006.871842.
[50] B. Rajasekharan, R. J. E. Hueting, C. Salm, T. V. Hemert, R. A. M.Wolters, and J. Schmitz, “Fabrication and characterization of the charge plasma diode,” IEEE Electron Device Lett., vol. 31, no. 6, pp. 528–530, Jun. 2010, doi: 10.1109/LED.2010.2045731.
[51] W.-J. Lee, and W.-Y. Choi, “A Novel Capacitorless 1T DRAM Cell for Data Retention Time Improvement,” IEEE Trans. Nanotechnology, vol. 10, no. 3, pp. 462-466, May. 2011, doi: 10.1109/TNANO.2010.2046743.
[52] B. Vandana, “Study of Floating Body Effect in SOI Technology,” International Journal of Modern Engineering Research, vol. 3, no.3, pp. 1817-1824, May. 2013, doi: 10.1049/el.2012.0980.
[53] T. Shino, I. Higashi, K. Fujita, T. Ohsawa, Y. Minami, T. Yamada, M. Morikado, H. Nakajima, K. Inoh, T. Hamamoto, and A. Nitayama, “Highly Scalable FBC (floating body cell) with 25nm BOX Structure for Embedded DRAM Applications,” VLSI Symp. Tech. Dig., pp. 132-133, Jun. 2004, doi: 10.1109/VLSIT.2004.1345435.
[54] E. Yoshida, and T. Tanaka, “A design of a capacitorless 1T-DRAM cell using gate-induced drain leakage (GIDL) current for low-power and high-speed embedded memory,” in IEDM Tech. Dig., pp. 37.6.1-37.6.4, Dec. 2003, doi: 10.1109/IEDM.2003.1269427.
[55] E. Yoshida, and T. Tanaka, “A Capacitorless 1T-DRAM Technology Using Gate-induced Drain-leakage (GIDL) Current for Low-Power and High-Speed Embedded Memory,” IEEE Trans. Electron Devices, vol. 53, no. 4, pp. 692-697, Apr. 2006, doi: 10.1109/TED.2006.870283.
[56] K. Boucart and A.M. Ionescu, “Double Gate Tunnel FET with High-k Gate Dielectric,” IEEE Trans. Electron Devices, vol.54, no.7, pp. 1725- 1733, Jul. 2007, doi: 10.1109/TED.2007.899389.
[57] X.-T Kong, X.-l Zhou, S.-Y Li, H.-D Chang, H.-G Liu, J. Wang, R.-R Liang, W. Wang, and J.-Q Pan, “High-Mobility In0.23Ga0.77As Channel MOSFETs Grown on Ge&Si Virtual Substrate by MOCVD,” IEEE Trans. Electron Devices, vol. 62, no. 5, pp. 1456-1459, May. 2015, doi: 10.1109/TED.2015.2411674.
[58] T. Shino, I. Higashi, K. Fujita, T. Ohsawa, Y. Minami, T. Yamada, M. Morikado, H. Nakajima, K. Inoh, T. Hamamoto, and A. Nitayama, “Highly Scalable FBC (floating body cell) with 25nm BOX Structure for Embedded DRAM Applications,” VLSI Symp. Tech. Dig., pp. 132-133. Jun. 2004, doi: 10.1109/VLSIT.2004.1345435.
[59] N. Navlakha, J.-T. Lin, and A. Kranti, “Improved Retention Time in Twin Gate 1T DRAM with Tunneling Based Read Mechanism,” IEEE Electron Device Lett., vol. 37, no. 9, pp. 1127–1130, Sep. 2016, doi: 10.1109/LED.2016.2593700.
[60] S. Okhonin, M. Nagoga, J. M. Sallese, and P. Fazan, “A capacitor-less 1T-DRAM cell,” IEEE Electron Device Lett., vol. 23, no. 2, pp. 85–87, Feb. 2002, doi: 10.1109/55.981314.
[61] M. Bawedin, S. Cristoloveanu, and D. Flandre, “A capacitorless 1T-DRAM on SOI based on dynamic coupling and double gate operation,” IEEE Electron Device Lett., vol. 29, no. 7, pp. 795–798, Jul. 2008, doi: 10.1109/LED.2008.2000601.
[62] J. Wan, C. L. Zaslavsky, and S. Cristoloveanu, “Z2-FET used as 1-transistor high-speed DRAM,” Proceedings of the European Solid-State Device Research Conference, pp. 197-200, Sep. 2012, doi: 10.1109/ESSDERC.2012.6343367.
[63] A. Z. Badwan, Z. Chbili, Y. Yang, A. A. Salman, Q. Li, and D. E. Ioannou, “SOI field-effect diode DRAM cell: Design and operation,” IEEE Electron Device Lett., vol. 34, no. 8, pp. 1002–1004, Aug. 2013, doi: 10.1109/LED.2013.2265552.
[64] K.-W. Ang, K.-J. Chui, V. Bliznetsov, Y. Wang, L.-Y. Wong, C.-H. Tung, N. Balasubramanian, M.-F. Li, G. Samudra, and Y.-C. Yeo, “Thin-body silicon-on-insulator N-MOSFET with silicon-carbon source/drain regions for performance enhancement,” in Proc. IEEE Int. Electron Devices Meeting, pp. 497–500, Dec. 2005, doi: 10.1109/IEDM.2005.1609390.
[65] S.-J. Choi, D.-II Moon, Y. Ding, E. Y. J. Kong, Y.-C. Yeo, and Y.-K. Choi, “A novel floating body cell memory with a laterally engineered bandgap using a Si-Si: C heterostructure,” in Proc. IEEE Int. Electron Devices Meeting, pp. 22.4.1–22.4.4, Dec. 2010, doi: 10.1109/IEDM.2010.5703413.
[66] K.-H. Kao and L.-Y. Chen, “A Dopingless FET With Metal–Insulator–Semiconductor Contacts,” IEEE Electron Device Lett., vol. 38, no. 1, pp. 5–8, Jan. 2017, doi: 10.1109/LED.2016.2628414.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code