Responsive image
博碩士論文 etd-0714118-190209 詳細資訊
Title page for etd-0714118-190209
論文名稱
Title
1.仿皮膚之氨基酸嵌段共聚物應用於光電材料與元件2.可自我修復高分子基質於奈米發電機之應用
1.Skin-inspired Optoelectronic Materials and Devices : Oligopeptide-based Diblock Copolymer 2.Self-Healing Polymer Substrate for Triboelectric nanogenerators (TENG)
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
159
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-25
繳交日期
Date of Submission
2018-08-14
關鍵字
Keywords
皮膚、配位化學、發光二極體、可拉伸、可拉伸光電高分子、氨基酸、奈米發電機、穿戴裝置、自我修復
Wearable devices, Skin, Light emitting diode, Peptide, Stretchable, Stretchable optoelectronics, Self-Healing, TENG
統計
Statistics
本論文已被瀏覽 5637 次,被下載 0
The thesis/dissertation has been browsed 5637 times, has been downloaded 0 times.
中文摘要
1.皮膚是人類最大的器官,擁有保護身體內的器官來自外界的侵入、合成維生素D 提
供人體運作、壓力與溫度感知能力以及自我癒合的功能等,是仿生材料中非常適合效
法的對象,引起了許多科學家的興趣與研究。在本研究中,蛋白質為人體不可或缺的
一部份,由不同種類的氨基酸組合會產生截然不一樣的特性,藉由引入不同之寡聚氨
基酸片段嵌入光電高分子中,試圖合成出生物兼容性佳、分子間氫鍵之強拉伸性質與
自我癒合的光電高分子,配合Fluorene (FL)之強發光特性以及與Benzothiadiazole (BT)
作為Donor-Acceptor copolymer 之高能量轉換效率的特性,測試其機械性質以及在未
拉伸與拉伸下光電性質之特性,分析結果後並製作成為可拉伸式有機光伏打電池
(OPV)、有機電晶體 (OTFT)或是有機發光二極體 (OLED),未來將應用在可拉伸穿
戴裝置的屏幕顯示、電晶體元件與電源供給上。
2.作為下個世代科技趨勢的軟性電子,其相關研究在近年得到眾人的關注。而能量
的供給裝置是軟性電子如穿戴式裝置的一個基礎。因此,本研究之主題在於合成
且製作出高透光度、具拉伸性質之摩擦起電奈米發電機。引入配位化學的概念,
將鋅離子作為交聯點,交聯具有配位基團修飾的聚二甲基矽氧烷作為可自我修復
的基質。由於材料的配位性質,材料本身僅僅藉由物理接觸其破損的表面便可於
常溫中產生修復效果。而本研究製作出高度修復性的軟性奈米發電機且短路電流
在1Hz 產生 0.6 μA 開路電壓為 50 V。藉由引入可自我修復且高度透明、堅韌的
基質與電極來達到呼應下個世代的自我給電的能量供給裝置 。
Abstract
1.Human skin is the largest organ of our body. By integration of protection from physical
impact, manufacturing the synthesized vitamin D into human bones, and sensing of
temperature and pressure, the complexity and multi-functionalities of skin receives great
attention as a promising material. Inspired by strong muscle texture, it's basically
composed of chemo-modifiable amino-acid. Herein, I introduced the oligopeptide segment
into the high-performance Fluorene-Benzothiadiazole donor-acceptor copolymer. We try
to ultimately develop the oligopeptide-based optoelectronic copolymer with good human
compatibility, strong stretchability, and hydrogen-bonding-driven self-healing ability. The
materials were characterized, spin-coated on the substrate and then processed into fully
stretchable devices. By measuring and analyzing including mechanical properties,
optoelectronic properties under strain, and self-healing test, these materials will be adopted
on the organic light-emitted diode(OLED), organic photovoltaic or organic thin-film
transistor(OTFT) as potential candidate materials for wearable devices.
2.Soft electronics received the great attention as the promising advanced technology in
recent years and the energy harvesting devices would be the fundamental building blocks
for driving the wearable devices. Thus, a transparent stretchable triboelectric
nanogenerator with both self-healable substrate and electrode is under investigation in this
research. We use the zinc-coordinated poly(dimethylsiloxane) (PDMS) as the self-healing
substrate. By the dynamic coordination bonding, the substrate could be easily self-healed
only the contact with the damaged part in room temperature. And we further fabricated the
soft TENG (Isc: 0.6 μA in 1 Hz and Voc: 50 V) based on the self-healing substrate and
electrode to demonstrate our concept.
目次 Table of Contents
目錄Contents
Verification letter from the Oral Examination Committee…………………………………i
Acknowledgement………………………………………………………………………ii
Abstract in Chinese of Topic 1………………………………………………………… iii
Abstract in English of Topic 1 ………………………………………………………… iv
Abstract in Chinese of Topic 2………………………………………………………… v
Abstract in English of Topic 2………………………………………………………… vi
Contents…………………………………………………………………………………vii
Catalog of figures………………………………………………………………………xi
1. Skin-inspired Oligopeptide-based Diblock Copolymer
Chapter 1 Introduction……………………………………………………………… 1
1-1 Recent Progress of Electronic Skin (e-skin) ………………………………… 1
1-2 Methods of Fabricating Stretchable Devices………………………………… 4
1-2.1 Geometrical Structure………………………………………………… 4
1-2.2 Intrinsic Stretchable Materials………………………………………… 6
1-3 Stretchable Polymer Light-emitted Diode (PLED)…………………………… 7
1-3.1 Recent Development………………………………………………… 7
1-3.2 Working Principles and Structure of PLED…………………………… 8
1-3.3 Challenge and Perspective ……………………………………… 10
1-4 Design of Polymer Emitter ………………………………………… 12
1-4.1 Donor-Acceptor Polymer …………………………………………… 12
1-4.2 Main Chain Design…………………………………………………… 13
1-4.3 Side Chain Engineering…………………………………………… 16
1 - 5 Characteristics……………………………………………………… 18
1-5.1 Stretchability Limitation …………………………………………… 18
1-5.2 Buckling Test for Tensile Modulus …………………………………… 19
1-5.3 Crack On-set Strain …………………………………………………… 20
1-5.4 Dichroic Ratio ………………………………………………………… 21
1-6 References ……………………………………………………………… 23
Chapter 2 Synthesis and Characteristics of Skin-inspired Oligopeptide-based
Diblock Copolymers …………………………………………………………… 30
2-1 Motivation and Design of Oligopeptide-based Diblock Copolymer………… 30
2-2 Synthesis and Molecular Information of Copolymer ………………………… 32
2-3 Optical Properties and DFT Calculation ……………………………………… 47
2-4 Thermal properties …………………………………………………………… 53
2-5 Mechanical Properties ……………………………………………………… 54
2-6 Healing Properties …………………………………………………………… 55
2-7 Device Fabrication ………………………………………………………… 60
2-8 Conclusion and Perspective……………………………………………… 72
Experimental Section ………………………………………………………………… 74
2. Self-Healing Polymer Substrate for TENG
Chapter 1 Introduction……………………………………………………………… 98
1-1 Recent Progress of Triboelectric Nanogenerators …………………………… 98
1-2 Theories of Triboelectric Nanogenerators (TENG) ………………………… 101
1-2.1 Maxwell's Displacement Current for Understanding Nanogenerators ……… 101
1-2.2 Fundamental of Triboelectric Nanogenerators (TENGs)……………… 103
1-3 Working Modes of TENGs …………………………………………………… 104
1-3.1 Contact-separation Mode …………………………………………… 104
1-3.2 Relative-sliding Mode ………………………………………………… 105
1-3.3 Single-electrode Mode ……………………………………………… 105
1-3.4 Free-standing Mode ………………………………………………… 106
1-4 TENG application for Energy Harvesting ……………………… 107
1-4.1 Energy Harvesting from Environment …………………………… 107
1-4.2 Self-powered Active Sensors …………………………………… 109
1-5 Material Design for TENG …………………………………………………… 110
1-6 Reference …………………………………………………………………… 112
Chapter 2 Synthesis and Characteristics of Zinc-coordinated-PDMS-based
TENG ……………………………………………………………………………114
2-1 Zinc-coordinated-PDMS-bipyridine-based TENG ………………………… 114
2-2 Synthesis and Film process of Substrate………………………… 117
2-3 Transparency ……………………………………………………………… 119
2-4 Mechanical properties ……………………………………………………… 119
2-5 Healing properties …………………………………………………… 120
2-6 Device Performance ……………………………………………………… 122
2-7 Conclusion …………………………………………………………… 123
Experimental Section ……………………………………………………………… 123
Spectrums ……………………………………………………………………….. 126
圖目錄Catalog of Figures
Skin-inspired Oligopeptide-based Diblock Copolymer
Chapter 1
Figure 1-1-1. Recent progress of E-skin[1] ………………………………………………3
Figure 1-1-2. Geometrical engineering for stretchable devices[20] ……………………5
Figure 1-1-3. Island structure stretchable transistor[19] ………………………………5
Figure 1-1-4. Design of intrinsic stretchable devices [20] ………………………………7
Figure 1-1-5. Working Principle of OLEDs/PLEDs……………………………………10
Figure 1-1-6. Introducing disorder [33, 40] ………………………………………………14
Figure 1-1-7. Oligo-peptide chains……………………………………………………16
Figure 1-1-8. Various types of amino acids……………………………………………17
Figure 1-1-9. Parameters for evaluating stretchability[33] ………………………………19
Figure 1-1-10. Methods for measuring the stretchability[43] ……………………………21
Chapter 2
Figure 1-2-1. Structures of oligopeptide-based diblock copolymers……………………31
Figure 1-2-2. Synthesis Scheme of F8B monomer……………………………………32
Figure 1-2-3. Synthesis Scheme of BTBr monomer……………………………………32
Figure 1-2-4. Synthesis Scheme of G monomer………………………………………33
Figure 1-2-5. Synthesis Scheme of GG monomer………………………………………34
Figure 1-2-6. Synthesis Scheme of GGG monomer……………………………………34
Figure 1-2-7. Synthesis Scheme of A monomer………………………………………35
Figure 1-2-8. Synthesis Scheme of PF8BTG1…………………………………………35
Figure 1-2-9. Synthesis Scheme of PF8BTG2…………………………………………36
Figure 1-2-10. Synthesis Scheme of PF8BTG3………………………………………36
Figure 1-2-11. Synthesis Scheme of PF8BTA1…………………………………………37
Figure 1-2-12. 1H NMR characteristics of hydrolysis experiments……………………39
Figure 1-2-13. 1H NMR characteristics of PF8BTG1…………………………………39
Figure 1-2-14. 1H NMR characteristics of PF8BTA1…………………………………40
Figure 1-2-15. 1H NMR characteristics of PF8BTG2…………………………………40
Figure 1-2-16. 1H NMR characteristics of PF8BTG3…………………………………41
Figure 1-2-17. IR spectrums of peptide-based monomers………………………………42
Figure 1-2-18a. IR spectrums of peptide-based copolymers ……………………………43
Figure 1-2-18b. IR spectrums of peptide-based copolymers……………………………44
Figure 1-2-19. Proposal of hydrogen bonding…………………………………………45
Figure 1-2-20. GIXRD pattern for copolymers…………………………………………46
Figure 1-2-21. Solution state UV-PL of copolymers……………………………………49
Figure 1-2-22. UV of PF8BTG1-10 film under different strain…………………………49
Figure 1-2-23. Dichroic ratio of PF8BTG1-10…………………………………………50
Figure 1-2-24. DFT calculation of PF8BT……………………………………………50
Figure 1-2-25. DFT calculation of F8BTG1……………………………………………51
Figure 1-2-26. DFT calculation of F8BTG2……………………………………………51
Figure 1-2-27. DFT calculation of F8BTG3……………………………………………52
Figure 1-2-28. DFT calculation of F8BTA1……………………………………………52
Figure 1-2-29. Thermogravimetric analysis……………………………………………53
Figure 1-2-30. Transfer steps…………………………………………………………54
Figure 1-2-31. OTMS SAM treated wafer………………………………………………55
Figure 1-2-32. OTMS SAM treated wafer with UV-Ozone treatment…………………56
Figure 1-2-33. Sample setting for optical microscopy (OM) …………………………56
Figure 1-2-34. Optical microscope images of PF8BT thin film on PDMS under different
strain……………………………………………………………………………………58
Figure 1-2-35. Optical microscope images of PF8BTG1-10 thin film on PDMS under
different strain…………………………………………………………………………59
Figure 1-2-36. Length of crack under stress……………………………………………60
Figure 1-2-37. Optical microscope images of released thin films from stress…………60
Figure 1-2-38. Optical microscope images of PF8BTG1-10 for solvent treatment
(chloroform vapor for 4 hr) ……………………………………………………………61
Figure 1-2-39. Optical microscope images of PF8BTG1-10 (released from 100%strain)
for solvent (chloroform vapor for 4 hr) and thermal treatment (150 °C for 10min) ……62
Figure 1-2-40. Optical microscope images of PF8BT (released from100%strain) for
solvent (chloroform vapor for 4 hr) and thermal treatment (150 °C for 10min) ………62
Figure 1-2-41. Optical microscope images of PF8BTG1-10 (100%strain) for thermal
treatment (130 °C for 10min) …………………………………………………………63
Figure 1-2-42. Optical microscope images of PF8BTG1-10 (a)pristine (b)under 50%
strain (c) released from 50% (d) healed at 130 °C for 30 min…………………………64
Figure 1-2-43. Optical microscope images of PF8BTG1-10 (a)pristine (b)under 50%
strain (c) released from 50% (d) healed at 150 °C for 30 min…………………………65
Figure 1-2-44. Optical microscope images of PF8BTG1-10 (a)pristine (b)under 100%
strain (c) released from 100% (d) healed at 130 °C for 30 min…………………………66
Figure 1-2-45. Optical microscope images of PF8BTG1-10 (a)pristine (b)under 100%
strain (c) released from 100% (d) healed at 150 °C for 30 min…………………………67
Figure 1-2-46. Device structure………………………………………………………68
Figure 1-2-47. Ionic salt………………………………………………………………69
Figure 1-2-48. Scanning electron microscope (SEM) images of PDMS//PEDOT:PSS…70
Figure 1-2-49. Needle structure of AgNWs……………………………………………71
Figure 1-2-50. Scanning electron microscope (SEM) images of PDMS // AgNWs //
PEDOT:PSS……………………………………………………………………………71
Figure 1-2-51. Molecule design for coordinated-driven self-healing…………………73
Figure 1-2-52. Molecule design for reversible imine bonds……………………………73
Self-Healing Polymer Substrate for TENG
Chapter 1
Figure 2-1-1. Table of energy sources [1b] ………………………………………………99
Figure 2-1-2. Development of nanogenerators[1a] ……………………………………100
Figure 2-1-3. Table of energy harvesting sources[1b] …………………………………100
Figure 2-1-4. Maxwell's displacement current [1b] ……………………………………102
Figure 2-1-5. Working principles of triboelectric nanogenerator[1b] …………………103
Figure 2-1-6. Modes of triboelectric nanogenerator[9] ………………………………104
Figure 2-1-7. Textile-based TNEGs [1a] ………………………………………………108
Figure 2-1-8. Self-healing TENG [22] …………………………………………………111
Chapter 2
Figure 2-2-1. Molecular design of Zn-bipy-PDMS……………………………………115
Figure 2-2-2. Device structure of Zn-bipy-PDMS TENG……………………………115
Figure 2-2-3. Synthesis scheme of Zn-bipy-PDMS……………………………………117
Figure 2-2-4. IR spectrum of Zn-bipy-PDMS…………………………………………118
Figure 2-2-5. Transparency of Zn-bipy-PDMS………………………………………119
Figure 2-2-6. Mechanical properties of Zn-bipy-PDMS substrate……………………120
Figure 2-2-7. Optical microscope images of healed Zn-bipy-PDMS…………………121
Figure 2-2-8. Isc and Voc in different frequency of applied impact……………………122
Figure 2-2-9. Cycling test of Zn-bipy-PDMS-based TENG…………………………122
參考文獻 References
[1] M. L. Hammock, A. Chortos, B. C. K. Tee, J. B. H. Tok, Z. Bao, Advanced
Materials 2013, 25, 5997-6038.
[2] E. M. Hume, N. S. Lucas, H. H. Smith, Biochem J. 1927, 21, 362-367.
[3] P. J. A. F. L. Rice , in The Senses: A Comprehensive Reference,, V. E. The
Senses: A Comprehensive Reference , A. K. A. I. Basbaum , G. M. Shepherd ,
G. Westheimer ,, R. H. M. T. D. Albright , P. Dallos , D. Oertel , S. Firestein ,,
M. C. B. G. K. Beauchamp , J. H. Kaas , E. Gardner ),, Academic Press , Ch. 1.
[4] B. Shin, J. Ha, M. Lee, K. Park, G. H. Park, T. H. Choi, K.-J. Cho, H.-Y. Kim,
Sci. Robotics 2018, 3, eaar2629.
[5] T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D.
N. Futaba, K. Hata, Nat. Nanotechnol. 2011, 6, 296.
[6] D. Son, J. Lee, S. Qiao, R. Ghaffari, J. Kim, J. E. Lee, C. Song, S. J. Kim, D. J.
Lee, S. W. Jun, S. Yang, M. Park, J. Shin, K. Do, M. Lee, K. Kang, C. S. Hwang,
N. Lu, T. Hyeon, D.-H. Kim, Nat. Nanotechnol. 2014, 9, 397.
[7] R. C. Webb, A. P. Bonifas, A. Behnaz, Y. Zhang, K. J. Yu, H. Cheng, M. Shi, Z.
Bian, Z. Liu, Y.-S. Kim, W.-H. Yeo, J. S. Park, J. Song, Y. Li, Y. Huang, A. M.
24
Gorbach, J. A. Rogers, Nat. Mater. 2013, 12, 938.
[8] H. M. Do, M. Pham, W. Sheng, D. Yang, M. Liu, Robotics and Autonomous
Systems 2018, 101, 74-92.
[9] I. Kershner, Star Wars Episode V: The Empire Strikes Back 1980, 20th Century
Fox.
[10] C. Pang, J. H. Koo, A. Nguyen, J. M. Caves, M. G. Kim, A. Chortos, K. Kim, P.
J. Wang, J. B. H. Tok, Z. Bao, Advanced Materials 2015, 27, 634-640.
[11] C. K. Jeong, J. Lee, S. Han, J. Ryu, G. T. Hwang, D. Y. Park, J. H. Park, S. S.
Lee, M. Byun, S. H. Ko, Advanced Materials 2015, 27, 2866-2875.
[12] J. Liang, L. Li, K. Tong, Z. Ren, W. Hu, X. Niu, Y. Chen, Q. Pei, ACS nano
2014, 8, 1590-1600.
[13] Y. Huang, M. Zhong, Y. Huang, M. Zhu, Z. Pei, Z. Wang, Q. Xue, X. Xie, C.
Zhi, Nature communications 2015, 6, 10310.
[14] B.-U. Hwang, J.-H. Lee, T. Q. Trung, E. Roh, D.-I. Kim, S.-W. Kim, N.-E. Lee,
ACS nano 2015, 9, 8801-8810.
[15] S. Lim, D. Son, J. Kim, Y. B. Lee, J. K. Song, S. Choi, D. J. Lee, J. H. Kim, M.
Lee, T. Hyeon, Advanced Functional Materials 2015, 25, 375-383.
[16] D.-H. Kim, J.-H. Ahn, W. M. Choi, H.-S. Kim, T.-H. Kim, J. Song, Y. Y. Huang,
Z. Liu, C. Lu, J. A. Rogers, Science 2008, 320, 507-511.
[17] D.-Y. Khang, H. Jiang, Y. Huang, J. A. Rogers, Science 2006, 311, 208-212.
[18] M. Kaltenbrunner, M. S. White, E. D. Głowacki, T. Sekitani, T. Someya, N. S.
Sariciftci, S. Bauer, Nature communications 2012, 3, 770.
[19] J.-S. Choi, C. W. Park, B. S. Na, S. C. Lim, S. S. Lee, K.-I. Cho, H. Y. Chu, J. B.
Koo, S.-W. Jung, S.-M. Yoon, IEEE Electron Device Letters 2014, 35, 762-764.
[20] T. Q. Trung, N. E. Lee, Advanced Materials 2017, 29.
[21] Y.-L. Rao, A. Chortos, R. Pfattner, F. Lissel, Y.-C. Chiu, V. Feig, J. Xu, T.
Kurosawa, X. Gu, C. Wang, Journal of the American Chemical Society 2016,
138, 6020-6027.
[22] S. Savagatrup, X. Zhao, E. Chan, J. Mei, D. J. Lipomi, Macromolecular rapid
communications 2016, 37, 1623-1628.
[23] J. Y. Oh, S. Rondeau-Gagné, Y.-C. Chiu, A. Chortos, F. Lissel, G.-J. N. Wang, B.
C. Schroeder, T. Kurosawa, J. Lopez, T. Katsumata, Nature 2016, 539, 411.
[24] Y. Xiao, S. Lang, M. Zhou, J. Qin, R. Yin, J. Gao, A. Heise, M. Lang, Journal of
Materials Chemistry B 2017, 5, 595-603.
26
[25] T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, T. Someya,
Nature materials 2009, 8, 494.
[26] S.-I. Park, Y. Xiong, R.-H. Kim, P. Elvikis, M. Meitl, D.-H. Kim, J. Wu, J. Yoon,
C.-J. Yu, Z. Liu, science 2009, 325, 977-981.
[27] M. S. White, M. Kaltenbrunner, E. D. Głowacki, K. Gutnichenko, G.
Kettlgruber, I. Graz, S. Aazou, C. Ulbricht, D. A. Egbe, M. C. Miron, Nature
Photonics 2013, 7, 811.
[28] T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y.
Tachibana, W. Yukita, M. Koizumi, T. Someya, Science advances 2016, 2,
e1501856.
[29] Z. Yu, X. Niu, Z. Liu, Q. Pei, Advanced materials 2011, 23, 3989-3994.
[30] J. Liang, L. Li, X. Niu, Z. Yu, Q. Pei, Nature Photonics 2013, 7, 817.
[31] S. Kee, N. Kim, B. Park, B. S. Kim, S. Hong, J. H. Lee, S. Jeong, A. Kim, S. Y.
Jang, K. Lee, Advanced Materials 2018, 30, 1703437.
[32] Y. Wang, C. Zhu, R. Pfattner, H. Yan, L. Jin, S. Chen, F. Molina-Lopez, F.
Lissel, J. Liu, N. I. Rabiah, Science advances 2017, 3, e1602076.
[33]G. J. N. Wang, A. Gasperini, Z. Bao, Advanced Electronic Materials 2018, 4, 1700429.
[34] J. Burroughes, D. Bradley, A. Brown, R. Marks, K. Mackay, R. Friend, P. Burns,
A. Holmes, nature 1990, 347, 539.
[35] Y. Ohmori, M. Uchida, C. Morishima, A. Fujii, K. Yoshino, Japanese journal of
applied physics 1993, 32, L1663.
[36] D. Romero, M. Schaer, M. Leclerc, D. Ades, A. Siove, L. Zuppiroli, Synthetic
metals 1996, 80, 271-277.
[37] M. Berggren, O. Inganäs, G. Gustafsson, J. Rasmusson, M. R. Andersson, T.
Hjertberg, O. Wennerström, Nature 1994, 372, 444.
[38] M. Mustafa, H. C. Kim, Y. H. Doh, K. H. Choi, Polymer Engineering & Science
2014, 54, 675-681.
[39] A. D. Printz, S. Savagatrup, D. J. Burke, T. N. Purdy, D. J. Lipomi, RSC
Advances 2014, 4, 13635-13643.
[40] Z. C. Smith, Z. M. Wright, A. M. Arnold, G. Sauvé, R. D. McCullough, S. A.
Sydlik, Advanced Electronic Materials 2017, 3.
[41] J.-Y. Sun, X. Zhao, W. R. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J.
J. Vlassak, Z. Suo, Nature 2012, 489, 133.
28
[42] aH. J. Kim, J.-H. Kim, J.-H. Ryu, Y. Kim, H. Kang, W. B. Lee, T.-S. Kim, B. J.
Kim, ACS nano 2014, 8, 10461-10470; bS. Savagatrup, A. D. Printz, D.
Rodriquez, D. J. Lipomi, Macromolecules 2014, 47, 1981-1992.
[43] D. Rodriquez, S. Savagatrup, E. Valle, C. M. Proctor, C. McDowell, G. C.
Bazan, T.-Q. Nguyen, D. J. Lipomi, ACS applied materials & interfaces 2016, 8,
11649-11657.
[44] D. J. Lipomi, Advanced Materials 2016, 28, 4180-4183.
[45] J.-H. Lee, J. Y. Chung, C. M. Stafford, ACS Macro Letters 2011, 1, 122-126.
[46] C. M. Stafford, C. Harrison, K. L. Beers, A. Karim, E. J. Amis, M. R.
VanLandingham, H.-C. Kim, W. Volksen, R. D. Miller, E. E. Simonyi, Nature
materials 2004, 3, 545.
[47] S. Savagatrup, A. S. Makaram, D. J. Burke, D. J. Lipomi, Advanced Functional
Materials 2014, 24, 1169-1181.
[48] S. I. Park, J. H. Ahn, X. Feng, S. Wang, Y. Huang, J. A. Rogers, Advanced
Functional Materials 2008, 18, 2673-2684.
[49] H. Gao, S. Chen, J. Liang, Q. Pei, ACS Applied Materials & Interfaces 2016, 8,
32504-32511.29
[50] aT. Hagler, K. Pakbaz, K. Voss, A. Heeger, Physical Review B 1991, 44, 8652;
bP. Dyreklev, M. Berggren, O. Inganäs, M. R. Andersson, O. Wennerström, T.
Hjertberg, Advanced Materials 1995, 7, 43-45.
[1] aM. Ma, Z. Kang, Q. Liao, Q. Zhang, F. Gao, X. Zhao, Z. Zhang, Y. Zhang, Nano Research
2018, 1-19; bZ. L. Wang, Materials Today 2017, 20, 74-82.
[2] R. Hiptmair, Acta Numerica 2002, 11, 237-339.
[3] Z. L. Wang, J. Song, Science 2006, 312, 242-246.
[4] F.-R. Fan, Z.-Q. Tian, Z. L. Wang, Nano energy 2012, 1, 328-334.
[5] M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack,
R. Schwödiauer, I. Graz, S. Bauer-Gogonea, S. Bauer, T. Someya, Nature 2013, 499, 458.
[6] N. Gershenfeld, R. Krikorian, D. Cohen, Scientific American 2004, 291, 76-81.
[7] M. Moravčík, M. Schmid, N. Burch, V. Lisý, D. Morrill, N. Bard, T. Davis, K. Waugh, M.
Johanson, M. Bowling, Science 2017, 356, 508-513.
[8] J. Hayward, G. Chansin, H. Zervos, Wearable Technology 2016–2026 Markets, Players
and 10-year Forecasts, IDTechEx.com, July 2016.
[9] X.-S. Zhang, M. Han, B. Kim, J.-F. Bao, J. Brugger, H. Zhang, Nano Energy 2018.
[10] aQ. Liang, X. Yan, X. Liao, S. Cao, X. Zheng, H. Si, S. Lu, Y. Zhang, Nano Energy 2015,
16, 329-338; bQ. Liang, X. Yan, X. Liao, Y. Zhang, Nano Energy 2016, 25, 18-25.
[11] Q. Zhang, Q. Liang, Q. Liao, F. Yi, X. Zheng, M. Ma, F. Gao, Y. Zhang, Advanced
Materials 2017, 29.
[12] L. Zhang, B. Zhang, J. Chen, L. Jin, W. Deng, J. Tang, H. Zhang, H. Pan, M. Zhu, W. Yang,
Advanced Materials 2016, 28, 1650-1656.
[13] K. N. Kim, J. Chun, J. W. Kim, K. Y. Lee, J.-U. Park, S.-W. Kim, Z. L. Wang, J. M. Baik,
ACS nano 2015, 9, 6394-6400.
[14] Y. Yang, H. Zhang, X. Zhong, F. Yi, R. Yu, Y. Zhang, Z. L. Wang, ACS applied materials
113
& interfaces 2014, 6, 3680-3688.
[15] Q. Liang, X. Yan, X. Liao, S. Cao, S. Lu, X. Zheng, Y. Zhang, Scientific reports 2015, 5,
16063.
[16] Y. Su, G. Zhu, W. Yang, J. Yang, J. Chen, Q. Jing, Z. Wu, Y. Jiang, Z. L. Wang, ACS nano
2014, 8, 3843-3850.
[17] Z. Li, J. Chen, J. Yang, Y. Su, X. Fan, Y. Wu, C. Yu, Z. L. Wang, Energy & Environmental
Science 2015, 8, 887-896.
[18] S. Wang, X. Mu, Y. Yang, C. Sun, A. Y. Gu, Z. L. Wang, Advanced Materials 2015, 27,
240-248.
[19] F.-R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang, Z. L. Wang, Nano letters 2012, 12, 3109-
3114.
[20] X. Pu, M. Liu, X. Chen, J. Sun, C. Du, Y. Zhang, J. Zhai, W. Hu, Z. L. Wang, Science
advances 2017, 3, e1700015.
[21] aK. Parida, V. Kumar, W. Jiangxin, V. Bhavanasi, R. Bendi, P. S. Lee, Advanced Materials
2017, 29; bJ. H. Lee, R. Hinchet, S. K. Kim, S. Kim, S.-W. Kim, Energy & Environmental
Science 2015, 8, 3605-3613; cW. Xu, L.-B. Huang, J. Hao, Nano Energy 2017, 40, 399-
407.
[22] J. Sun, X. Pu, M. Liu, A. Yu, C. Du, J. Zhai, W. Hu, Z. L. Wang, ACS nano 2018.
[23] Y.-L. Rao, A. Chortos, R. Pfattner, F. Lissel, Y.-C. Chiu, V. Feig, J. Xu, T. Kurosawa, X.
Gu, C. Wang, Journal of the American Chemical Society 2016, 138, 6020-6027.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.186.6
論文開放下載的時間是 校外不公開

Your IP address is 3.145.186.6
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code