Responsive image
博碩士論文 etd-0714118-220618 詳細資訊
Title page for etd-0714118-220618
論文名稱
Title
磁通密度和霍爾感測器對油中鐵顆粒濃度之檢測準確度的影響
Effects of Magnetic Flux Density and Hall Sensor on Detecting Accuracy of Ferrous Debris Concentration in Oils
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
122
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-24
繳交日期
Date of Submission
2018-08-16
關鍵字
Keywords
鐵相分析、鐵顆粒濃度、放電加工液品質、霍爾感測器
Detecting of EDM fluid, Hall sensor, Ferrous debris concentration, Ferrography
統計
Statistics
本論文已被瀏覽 5687 次,被下載 0
The thesis/dissertation has been browsed 5687 times, has been downloaded 0 times.
中文摘要
機械設備的運轉須使用潤滑系統,檢測潤滑油的品質與污染物仍為現今工業裡重要的一環,實驗室先前對此開發出一套油中鐵顆粒濃度之線上自動檢測裝置,使其能即時得知機械設備之運轉狀況,可及早預防機械設備的損壞。該裝置之檢測原理為磁通量檢測法,但是該裝置之霍爾感測器與檢測準確度仍嫌不足,有待改善。因此本研究探討不同霍爾感測器對檢測準確度之影響,最終選用的感測器W135,結果顯示當鐵顆粒濃度為800ppm時,其霍爾電壓差值可達88mV,相較於先前使用的AH49E的8mV,其靈敏度增加達約11倍。
進行放電加工液檢測前,先使用八種不同鐵顆粒濃度之樣品油進行校正,結果顯示其量測誤差皆小於5 ppm。再進行非線上鐵顆粒濃度檢測,當加工量為2000mg時,W135之霍爾電壓值為83mV,相較於AH49E的16mV,其靈敏度增加達約5倍。進行線上鐵顆粒濃度檢測時,W135之霍爾電壓值為80mV,比AH49E之4.2mV高達19倍。結果顯示W135之霍爾感測器遠比AH49E靈敏許多。最後對加工液中的鐵顆粒進行分析,改善裝置的準確度與穩定性。
本研究並改善檢測裝置的顯示單元使其更適合應用於智慧製造工程。使用微控制器Ardunio編譯後搭配LCD面板,可即時顯示油品的鐵顆粒濃度值,且可使用藍芽設備傳送鐵顆粒濃度值至智慧型手機上,達成即時監控油品的品質,使機械設備操作者能簡單觀察機械設備的磨耗狀況。
Abstract
The operation of mechanical equipment requires the use of a lubrication system. The detection of the quality and contamination of lubricants remains an important part of today's industry. Our laboratory has previously developed an online automatic detection device for the concentration of iron particles in the oil, so that it can instantly know the operation status of the mechanical equipment and prevent the damage of mechanical equipment at an early stage. The detection principle of the device was the magnetic flux detection method, but the Hall sensor and the detection accuracy of the device were still insufficient and need to be improved. Therefore, this study explored the effect of different Hall sensors on the accuracy of detection. The sensor W135 was selected. Results showed that when the iron particle concentration was 800ppm, the Hall voltage difference could achieve 88mV. Compared with the previous results used the sensor AH49E where the Hall voltage difference was 8mV, its sensitivity was increases by about 11 times.
Prior to the detection of the EDM fluid, the calibration was performed using eight different iron particle concentrations. Results showed that the measurement errors were less than 5 ppm. For the non-line detection, when the removal amount was 2000 mg, the Hall voltage value of W135 was 83 mV, which was about 5.18 times higher than that of AH49E (16 mV). For on-line detection, the Hall voltage difference of W135 was 80mV, which is 19 times higher than the 4.2mV of AH49E. Results showed that the W135 Hall sensor was much more sensitive than the AH49E. Finally, the ferrous debris in the EDM fluid was analyzed to improve the accuracy and stability of the device.
This study also improved the display unit of the detection device to make it more suitable for intelligent manufacturing engineering. After compiled the microcontroller “Ardunio”, it matched with the LCD panel, so that the iron particle concentration value of the oil could be instantly displayed in the smart phone using the Bluetooth device to instantly monitor the quality of the oil. The operator could simply observe the wear condition of the mechanical equipment.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstrat iv
目錄 v
圖次 viii
表次 xiii
第一章 緒論 1
1. 1研究背景 1
1. 2文獻回顧 2
1.2.1 鐵相分析技術之概述 2
1.2.2非線上(off-line)鐵相分析的發展 3
1.2.3線上(On-line)鐵相分析儀之發展 7
1.2.4 C型磁鐵的設計 22
1. 3油中之鐵顆粒濃度檢測技術 23
1.4研究動機 26
第二章 檢測裝置介紹與理論 27
2.1 油中鐵顆粒濃度檢測裝置 27
2.1.1檢測裝置 27
2.2 霍爾元件之選擇 36
2.2.1霍爾元件之介紹 36
2.2.2霍爾元件之選擇 38
2.3 霍爾元件於無鐵顆粒吸附時之訊號測試 47
2.3.1 AH49E 在三種固定磁場下的訊號範圍 47
2.3.2 W135在三種固定磁場下的訊號範圍 48
2.3.3 W315在三種固定磁場下的訊號範圍 50
2.4 霍爾元件之比對 52
2.4.1 AH49E 在三種不同磁場下所量測到的霍爾電壓差之比較 52
2.4.2 W135 在三種不同磁場下所量測到的霍爾電壓差之比較 53
2.4.3 W315 在三種不同磁場下所量測到的霍爾電壓差之比較 55
2.4.4 三種霍爾元件磁場在1000高斯下所量測到的霍爾電壓差之比較 58
2.4.5 三種霍爾元件磁場在2000高斯下所量測到的霍爾電壓差之比較 59
2.4.6 三種霍爾元件磁場在3000高斯下所量測到的霍爾電壓差之比較 60
2.5 磁鐵之設定與比對 61
2.5.1 C型磁鐵之設定 61
2.5.2 C型磁鐵之比對 64
第三章 實驗設備與實驗方法 65
3.1 實驗設備 66
3.1.1放電加工機 66
3.1.2 放電加工之加工液循環系統 67
3.1.3實驗用儀器 68
3.2 實驗材料之特性與前處理 70
3.2.1 實驗之工件材料 70
3.2.2 實驗之工具電極 71
3.2.3 實驗之放電加工液 72
3.2.4 實驗用材料之前處理 72
3.2.5樣品油之製備與處理 73
3.3實驗之流程 78
3.3.1實驗條件設定 78
3.3.2非線上檢測之實驗流程 79
3.3.3 線上檢測之實驗流程 81
3.4 檢測裝置之顯示單元改善 83
3.4.1訊號之轉換 83
3.4.2顯示單元之電路設計 84
3.4.3 顯示單元之PCB板製作 89
3.4.4顯示單元結果呈現 91
第四章 實驗結果與討論 92
4.1非線上檢測結果 92
4.1.1鐵顆粒濃度非線上檢測結果 92
4.1.2鐵顆粒之粒徑與成分分析 94
4.2線上檢測結果 97
4.2.1鐵顆粒於流體中受力情形 98
4.2.2鐵顆粒濃度線上檢測結果 99
第五章 結論與未來展望 103
5.1結論
5.2未來展望 104
參考文獻 105
參考文獻 References
1. 邱源成編著, 「智慧製造與監測技術」, 國立中山大學機械與機電工程學系, 2018, 28-49
2. K. Miura, “Condition diagnosis technology on lubrication by ferrography”, Journal of Japanese Society of Lubrication Engineers, 14(1983)255.
3. 邱源成編著, 「磨潤學」, 國立中山大學機械與機電工程學系, 2016,2-5
4. W. W. Seifert and V. C. Westcott, “A method for the study of wear particles in lubricating oil”, Wear, 21(1972)27-42.
5. D. Scott and V. C. Westcott, “Predictive maintenance by ferrography”, Wear, 44(1977)173-182.
6. D. Scott, P.J. McCullagh and G.W. Campbell, “Condition monitoring of gas turbines - An exploratory investigation of Ferrographic trend analysis”, Wear, 49(1978)373-389
7. A. L. Price and B. J. Roylance, “Rotary particle depositor”, Industrial Lubrication and Tribology, 37(1985)747-767.
8. Y. C. Chiou, “Study of wear particle deposition by an improved rotary ferrographic analyzer”, Wear, 146(1991)137-147.
9. Y. C. Chiou, R. T. Lee, Y. A. Chang and W. F. Kuo, “Fundamental characteristics of wear particle deposition by an improved rotary ferrographic analyser”, Wear, 155(1992)285-295.
10. O. Lloyd and A. F. Cox, “Monitoring debris in turbine generator oil”, Wear, 71(1987)79-91.
11. P. W. Centers, “Laboratory evaluation of the on-line ferrograph ”, Wear, 90(1983)1-9.
12. K. W. Chambers, M. C. Arneson and C. A. Waggoner, “An on-line ferromagnetic wear debris sensor for machinery condition monitoring and failure detection”, Wear, 128(1988)325-337.
13. Y. Liu, Y. B. Xie, C. J. Yuan and Z. Y. Li, “Research on an on-line ferrograph”, Wear, 153(1992)323-330.
14. N.K.Myshkin, L.V. Markova, M.S. Semenyuk, H. Kong, H.-G. Hanand E.-S. Yoon, “Wear monitoring based on theanalysis of lubricant contamination by optical ferroanalyzer”, Wear, 255(2003)1270-1275.
15. W. F. Kuo, Y. C. Chiou and R. T. Lee, “Fundamental characteristics of wear particle deposition measurement by an improved on-line ferrographic analyzer” ,Wear, 208(1997)42-49.
16. Y. C. Chiou, R. T. Lee and C. Y. Tsai, “An on-line Hall-effect device for monitoring wear particle in oils”, Wear, 223(1998)44-49.
17. Y. Liu, Zhong Liu, Y. Xie and Z. Yao, “Research on an on-line wear condition monitoring system for marine diesel engine”, Tribology International 33 (2000) 829–835.
18. Y. Liu, Z. Liu, S. Wen and Y. Xie, “Motion analysis on the particles in a magnetic field detector” , Tribology International 33 (2000) 837–843.
19. N. Kentaro, I. Tomomi, “Development of a Method for Monitoring Lubricant Deterioration”, NTN Technical Review No.76(2008).
20. 左洪福,李紹成,文振華,卞利,「靜電式油中磨粒在線監測方法及系統」,中國專利,(2008),CN101393108A
21. 陳以諾, 「檢測潤滑油的鐵顆粒濃度及黏度之整合裝置」,國立中山大學機械與機電工程學系碩士論文 (2009)
22. Li Du and J. Zhe, “A high throughput inductive pulse sensor for online oil debris
monitoring”, Tribology International, 44(2011)175-179.
23. JEF Steel Corporation, “On-line Ferrous Wear Debris Sensor MK-90 ”, JEF technical report No.17(Apr.2012),New Products & Technologies(p.49-p.51).
24. W.T. Hai , W.H. Kun , D. Yang and P.Z. Xiao,“ Progress and trend of sensor technology for online monitoring” , Science China Technological Sciences December 2013, DOI:10.1007/s11431-013-5400-5
25. 胡紅利,楊帆,楊星月,范優飛,王小鑫,劉饒驍「一種在線監測油液的裝置及方法」,中國專利,(2015),CN104458521A
26. K. Yang, X. Sun, X. Zeng and T. Wu, “Research on influence of water content to
the measurement of wear particle concentration in turbine oil online monitoring simulation”, Wear, 376-377(2017)1222-1226.
27. I. Inthawatkul, W. Sriratana and S. Satthamsakul, “Measurement of Metal Particles in Oil Lubricant using Hall Effect Sensor Under Temperature Conditions”, Proceedings of the SICE Annual Conference 2017,September 19-22, 2017, Kanazawa University, Kanazawa, Japan.
28. T. Kayaba, K. Kato and T. Akagaki, “Ferrographic study of wear (first report) the fundamental characteristics of magnetic wear debris separation analysis”, Journal of Japanese Society of Lubrication Engineers, 29(1984)745-752.
29. W. F. Kuo, Y. C. Chiou and R.T. Lee, “The Analysis of Magnetic Field and the Behavior Studies of Wear Debris Deposition for the Stationary Ferrographic Analyzer”, Journal of the Chinese Society of Mechanical Engineers, 15(1994)563-571.
30. C. Frei, “Process and apparatus for controlling the concentration of solid
particles in suspension in a liquid fluid” , U. S. Patent, (1982) NO.4362989.
31. El-Menshawy et al., “Methods and apparatus for monitoring the condition of dielectric liquid in electric discharge maching” , U. S. Patent, (1983) NO.4392110
32. 林紘億, 「放電加工液中鐵顆粒濃度及黏度之檢測裝置」,國立中山大學機械與機電工程學系碩士論文 (2016)
33. 林柏澔, 「油中鐵顆粒濃度之線上自動檢測裝置的研發」,國立中山大學機械與機電工程學系碩士論文 (2017)
34. R. T. Lewis, “Method and device including a bed of ferromagnetic fibers and
magnetic flux sensor for measuring the amount of magnetic particles on a liquid”, U. S. Patent, (1987) No.4692698
35. Honywell Inc, “Hall Effect Sensing and Application”,Sensing and Control, pp.3-10
36. Datasheet Hall Effect Sensor Website, “https://www.diodes.com/assets/Datasheets/AH49E.pdf ”
37. Datasheet Hall Effect Sensor Website, “http://www.winson.com.tw/Data Sheet/WSH135.pdf”
38. Datasheet Hall Effect Sensor Website, “http://www.winson.com.tw/Data Sheet/WSH315.pdf”
39. 趙英傑 , 「超圖解 Arduino 互動設計入門」,旗標科技股份有限公司出版
40. Texas Instruments, Datasheet Analog-to-Digital Converters(ADC) Website, “http://www.ti.com/lit/ds/symlink/ads1115.pdf”
41. Datasheet HC-05 Bluetooth to Serial Port Module Website,
“http://www.electronicaestudio.com/docs/istd016A.pdf”
42. Auson Technology, PCB Production Process, “http://www.auson.com.tw/upload/2013May/pdf/2013050913260352_1.pdf”
43. V. S. R. Murti and P. K. Philip, “An analysis of the debris in ultrasonic-assisted electrical discharge machining”, Wear, 117(1987)241-250.
44. S.K. Parida, Jyoshnarani Mohapatra, D.K. Mishra,“Structural and magnetic behavior of spinel CuMn2O4 synthesized by co-melting technique”,Materials Letters,181(2016)116-118
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.23.101.41
論文開放下載的時間是 校外不公開

Your IP address is 3.23.101.41
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code