Responsive image
博碩士論文 etd-0715103-102834 詳細資訊
Title page for etd-0715103-102834
論文名稱
Title
結合散射參數之時域有限差分法在微波電路模擬上的應用
Application of the FDTD Method with the Scattering Matrix in Microwave Circuit Simulation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
64
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-06-17
繳交日期
Date of Submission
2003-07-15
關鍵字
Keywords
散射參數、微波電路、時域有限差分
Microwave Circuit, Scattering Matrix, Finite-Difference Time Domain
統計
Statistics
本論文已被瀏覽 5663 次,被下載 2675
The thesis/dissertation has been browsed 5663 times, has been downloaded 2675 times.
中文摘要
時域有限差分法 ( Finite-Difference Time-Domain,,FDTD ),是將馬克斯威爾方程式 ( Maxwell’s Equation )以二階中央差分法離散化,配合空間網格上之電磁場配置,在一個有限體積之計算空間內,以電生磁磁生電的跳步(leapfrog)方式,一步步計算出空間中電磁場的分佈情形。不同於頻域分析的方法(如Finite Element Method ),在頻域計算中需一個一個頻率點去分析,故當欲觀察的頻率極其寬頻時,所花費的時間將非常長;而使用時域的分析法,其好處為分析出來的數據只要透過傅利葉轉換即可得到完整的頻域響應,而不用再重新計算。

由於現今的套裝軟體,並無法將場論與電路模擬做一兩者兼具的結合,故微波電路的模擬與實做,常會因考量不夠週全而產生誤差。而時域有限差分法除了也是全波分析的技巧,經過延伸,如連結到SPICE或加入S參數等,更可在模擬結構中包含集總元件、非線性元件或主動元件等。故本論文的重點是在FDTD下發展模擬微波電路的方法,使得場論與電路模擬能有一完整的結合;並且在最後使用等效電源法分析主動天線,及使用散射參數法分析一低雜訊放大器,驗證在FDTD下模擬微波電路的可行性。

Abstract
The finite-Difference Time Domain method (FDTD) is to derive the discrete form of the Maxwell’s equations by second-order central difference with the electromagnetic distribution of the Yee space lattice, and computes the value of the electric field and magnetic field in the simulation space by using leapfrog for time derivatives. This method is also different with the frequency domain method which needs to analyze its value individually (ex. Finite Element method). The frequency domain method needs to take a long time for analyzing the response on each spectrum point when the bandwidth is very wide. The advantage of time domain analysis is to obtain the complete frequency response from the simulation value through Fourier Transform method.

It’s impossible to combine the electromagnetic analysis with the lumped circuit simulation in current simulation CAD. Thereby the performance of the simulation result and the practical implementation always occurs error because of the lake of the consideration. The FDTD method is the full-wave algorithm which can also simulate the lump element, nonlinear element or active element in simulation space by linking to SPICE or S-parameter. The purpose of this thesis is to develop the method for simulating microwave circuit, and to verify the credibility between the equivalent source method and the S-parameter method in FDTD by the simulation of active antenna and low-noise amplifier.

目次 Table of Contents
誌謝.................................................................................................................................i
中文謫要........................................................................................................................ii
英文謫要.......................................................................................................................iii
目錄....………………………………………………………………………………...iv
圖表目錄……………………………………………………………………………...vi
第一章 序論…………………………………………………………………………1
1.1 概述…………………………………………………………………………1
1.2 論文大綱……………………………………………………………………2
第二章 FDTD演算法……………………………………………………………….3
2.1 FDTD公式推導………………………………………………………….…3
2.2 Courant穩定準則…………………. ………………………………………6
2.3 吸收邊界條件……………………. …………………………………….….6
2.3.1 Mur一階吸收邊界………………………………………………….7
2.3.2 Anisotropic PML吸收邊界…………………….…………………..8
2.4 全場/散射場公式………………………………………………………….11
2.4.1 全場/散射場公式推導…………………………...………………..11
2.4.2 模擬驗證……………………………………………………….….13
2.5 近遠場轉換………………………………..………………………………16
2.5.1 克希荷夫表面積分公式…………………..………………………16
2.5.2 2/3波長Dipole Antenna的模擬……………….…………………19
2.5.3 Patch Antenna的模擬………………………………….………….20
第三章 集總元件模擬………………………………………………..……………23
3.1 集總元件演算法………………………………………………….……….23
3.1.1 電阻………………………………………………………………..24
3.1.2 電容………………………………………………………………..24
3.1.3 電感…………………………………………….………………….25
3.1.4 阻抗性電壓源……………………………………………………..25
3.2 等效電源法………………………………………………………………..26
3.2.1 等效電流源法……………………………….…………………….26
3.2.2 等效電壓源法……………………………………………………..28
3.2.3 等效電源法的資料流程……………………………………..……30
3.2.4 模擬LC串聯電路…………………………………………………31
3.3 散射參數法………………………………………………………………..32
3.3.1 理論推導……………………………………………………..……32
3.3.2 時域導納矩陣的計算………………………………..……………34
3.3.3 模擬與比較………………………………………………………..35
3.3.4 導納矩陣之收斂探討……………………………………………..37
3.4 優缺點比較………………………………………………….…………….39
3.5 應用模擬低雜訊放大器…………………………………………………..40
第四章 主動天線分析………………………………………………………..……44
4.1 概述…………………………………………………………………..……44
4.2 天線分析…………………………………………………..………………44
第五章 模擬接收模組……………………………………………………………..49
5.1 概述………………………………………………………………………..49
5.2 元件探討…………………………………………………………………..49
5.2.1 接收天線…………………………………………………………..50
5.2.2 低雜訊放大器……………………………………………………..53
5.3 接收模擬…………………………………………………………………..55
5.3.1 x方向極化平面………………………………………………..….55
5.3.2 z方向極化平面……………………………………………………58
第六章 結論………………………………………………………………………..61
附錄A. 主動天線結構圖…………………………………………………………..62
參考文獻……………………………………………………………………………..63
參考文獻 References
[1] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media,” IEEE Trans. Antennas Propagat., vol.14, No.3, pp.300-307, May 1966.

[2] A. Taflove, Computational Electrodynamics The Finite-Difference Time-Domain Method, 1995.

[3] G. Mur, “Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations”, Electromagnetic Compatibility, IEEE Transactions on Volume: 23, Nov 1981 ,pp. 377 –382

[4] J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Computat. Phys., vol. 114, pp. 185-200, 1994.

[5] Z. S. Sacks, D.M. Kingsland, R. Lee, and J. F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas and Propagat., vol. 43, pp. 1460 –1463, Dec. 1995.

[6] S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices,” IEEE Trans. Antennas and Propagat., vol. 44, pp. 1630 -1639, Dec. 1996.

[7] Umashankar, K. R., and A. Taflove, “A novel method to analyze electromagnetic scattering of complex objects,” IEEE Trans. Electromagnetic Compatibility, Vol. 24, 1982, pp. 397-405.

[8] K. S. Yee, D. Ingham, and K. Shlager, “Time domain extrapolation to the far field based on FDTD calculations,” IEEE Trans. Antennas Propagat., vol.39, pp. 410-413, Mar. 1991.

[9] R. J. Luebbers, K. S. Kunz, M. Schneider, and F. Hunsberger, “A finite- difference time-domain near zone to far zone transformation,” IEEE Trans. Antennas Propagat., vol.14, No.39, pp.429-433, Apr. 1991.

[10] O. M. Ramahi, “Near- and far-field calculation in FDTD simulations using Kirchhoff Surface Integral Representation,” IEEE Trans. Antennas Propagat., vol.45, pp.753-759, May 1997.

[11] J. D. Jackson, Classical Electrodynamics. New York: Wiley, 1962.

[12] D. M. Sheen , S. M. Ali , M. D. Abouzahra and J. A. Kong ,“Application of the three-dimensional finite-difference time-domain method to the analysis of plannar microstrip circuits ,” IEEE Trans. Microwave Theory Tech. , vol. 38 , pp. 849-857 , July 1990.

[13] W. Sui , D. A. Christensen , and Carl H. Durney , “Extending the Two-Dimensional FDTD Method to Hybrid Electromagnetic System with Active and Passive Lumped Elements ,” IEEE Transactions on Microwave Theory Tech. , vol. 40 , NO. 4 , April 1992 .

[14] M. P. May , A. Taflove , and J. Baron , “FD-TD Modeling of Digital Signal Propagation in 3-D Circuits with Passive and Active Loads ,” IEEE Transactions on Microwave Theory and Techniques , vol. 42 , No. 8 , August 1994 .

[15] B. Toland, B.Houshmand, and T. Itoh, “Modeling of nonlinear active regions with the FDTD method,” accepted for publication in IEEE Microwave and Guided Wave Letters.

[16] Vincent A. Thomas, Michael E. Jones, Melinda Piket-May, Allen Taflove, and Evans Harrigan, “The use of SPICE lumped circuits as sub-grid models for FDTD analysis.” accepted for publication in IEEE Microwave and Guided Wave Letters, Vol. 4, No. 5, May 1994.

[17] Chien-Nan Kuo , Ruey-Beei Wu , Bijan Houshmand , and Tatsuo Itoh ,”Modeling of Microwave Active Devices Using the FDTD Analysis Based on the Voltage-Source Approach ,” IEEE Microwave and Guided Wave Letters , Vol. 6 , No. 5 , pp. 199-201 , May 1996.

[18] Chien-Nan Kuo , Bijan Houshmand , and Tatsuo Itoh ,”FDTD analysis of active circuits with equivalent current source approach , ” in 1995 IEEE AP-S Int. Symp. Dig. , Newport Beach , CA , June 1995 , pp. 1510-1513 .

[19] Jiazong Zhang, Yunyi Wang, “FDTD Analysis of Active Circuits Based on the S-parameters.” in 1997 Asia Pacific Microwave Conference, 5A18-4, pp.1049-1052.

[20] Vincent A. Thomas, Kuok-Mee ling, Michael E. Jones, Brent Toland, Jenshan Lin, and Tatsuo Itoh, “ FDTD analysis of an active antenna.” IEEE Microwave and Guided Wave Letters , Vol. 4 , No. 9 , pp. 296-298 , Sep. 1994.

[21] S. Nogi, J. Lin, and T. Itoh, “Mode analysis and stabilization of a spatial power-combining array with strongly coupled oscillators,” to be published in the special issue on Quasi-Optical Techniques of the IEEE Trans. Microwave Theory Tech., Oct. 1993.

[22] J. Lin, S. Nogi, and T. Itoh, “Mode switch in a two element active array,” in Proc. IEEE AP-S int. Symp. Dif., June 28 - July 2, 1993, Ann Arbor, MI, vol. 2, pp. 664-667.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code