Responsive image
博碩士論文 etd-0715103-141435 詳細資訊
Title page for etd-0715103-141435
論文名稱
Title
靜脈注射脂多醣引起大鼠小腸血漿外洩及黏液分泌影響之研究
Effect on intravenous administration of lipopolysaccharide on plasma leakage and mucus secretion in rat small intestine
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
63
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-06-16
繳交日期
Date of Submission
2003-07-15
關鍵字
Keywords
杯狀細胞、內毒素、發炎、小腸、血漿滲漏
inflammation, plasma leakage, small intestine, goblet cell, endotoxin
統計
Statistics
本論文已被瀏覽 5693 次,被下載 6534
The thesis/dissertation has been browsed 5693 times, has been downloaded 6534 times.
中文摘要
【中文摘要】

內毒素為一種脂多醣 (lipopolysaccharide, 簡稱為LPS),是來自革蘭氏陰性菌細胞壁的毒性化學物質,可刺激免疫細胞 (包含巨嗜細胞,白血球) 釋放細胞介素 (cytokine),這些物質包括interleukin-1β、interleukin-6 及tumor necrosis factor-α等,這些發炎前媒介物進而引起全身性急性發炎反應,以及個體多重器官衰竭等敗血性休克症狀。而在發炎反應的過程中,血管系統的血漿滲漏是一個重要的指標。其他已被廣泛研究的發炎物質如:辣椒素、物質P及組織胺,可刺激整個呼吸道及部分消化道引起發炎反應,是由於它們可以誘發微血管後小靜脈內皮形成許多直徑約1.4 μm的內皮隙,從此處漏出大量血漿,蓄積在結締組織而形成水腫。哺乳類的消化系統的上皮組織存在大量的杯狀細胞,其分泌的黏液除了浸潤食糜之外,亦可形成一道屏障,保護消化道的上皮組織免於受到物理及化學性的傷害。在發炎反應、病原菌的感染或是其他的免疫因子的刺激下,均會改變杯狀細胞的功能及其數目。本實驗的重點在於:(1) 研究靜脈注射高劑量LPS (15 mg/kg) 對於小腸血漿滲漏程度及杯狀細胞分泌作用的影響。(2) 迷走神經及膽鹼性接受器是否參與LPS所引起的血漿滲漏及杯狀細胞細胞的分泌作用。本實驗利用靜脈注射發炎追蹤劑印地安墨汁來標定血漿滲漏的血管,並且利用銀染色灌流法來標定內皮細胞間的內皮隙;將小腸組織以 3μm 厚度的切片及Alcian blue-PAS 染色法來呈現黏液中的醣蛋白,用以觀察杯狀細胞的分泌作用。實驗結果顯示,靜脈注射LPS不僅引起小腸組織的血漿滲漏並且伴隨著高比率的杯狀細胞分泌作用,造成微血管後小靜脈及收集靜脈形成大量的內皮隙。而血漿滲漏在LPS刺激的早期 (5到30分鐘) 即大量產生,但是杯狀細胞的分泌則出現在內毒素刺激後30分鐘,並且在1小時後黏液會大量的堆積在絨毛間隙中。以muscarinic 接受器的拮抗劑atropine前處理,可明顯的抑制LPS所引起杯狀細胞的分泌。然而,以atropine處理或是施以雙側頸迷走神經切除術,對抑制LPS所引起的血漿滲漏並不一致。由實驗結果推論,靜脈注射高劑量的內毒素所引起的敗血性休克中,小腸的血漿滲漏及杯狀細胞的過度分泌是有時間性的,並且伴隨著膽鹼性muscarinic接受器的活化。
Abstract
【Abstract】

Lipopolysaccharide (LPS) is the toxic chemical component of the cell wall in all gram-negative bacteria which can stimulate immune cells, including macrophages and white blood cell, to release cytokines such as interleukin-1β, interleukin-6 and tumor necrosis factor-α. These pro-inflammatory mediators induce systemic acute inflammation and multiple organs dysfuction syndrome in sepsis. Plasma leakage from microvasculature is a hallmark of inflammation. Previous studies have demonstrated that other inflammatory agents, such as capsaicin, substance P and histamine could cause the acute formation of numerous endothelial gaps in the venules that result in extensive plasma leakage in the inflammatory tissues of the whole respiratory tract and a part of digestive tract in a few minutes. Mammalian intestines have many goblet cells that synthesize mucus and discharge it into the intestinal lumen. The mucus film that covers the surface epithelium facing the lumen of digestive system, is an immune defense that can prevent gastrointestinal epithelium from chemical and physical damage and act as a lubricant. Changes in goblet cell function and number are involved in microbial infection, inflammatory syndromes and immune factors. This study was aimed to investigate: (1) The degree of Plasma leakage and goblet cell hypersecretion in the small intestine of rats after an intravenous injection of a high dose of LPS (15 mg/kg), and (2) The involvement of vagus nerve and cholinergic receptors in plasma leakage and goblet cell secretion. For the study of plasma extravasation in small intestine during endotoxema, India ink was used as the tracer to mark the inflamed leaky microvessels. Rats were perfusion-fixed through the aorta, and endothelial gaps between endothelial cells of blood vessels were made visible with silver staining. The methacrylate sections of the ileum 3 μm in thickness were stained with Alcian blue and periodic acid-schiff reagent to detect glycoproteins of goblet cells. Our results showed that LPS not only caused an increase in plasma leakage but also triggered degranulation of many goblet cells in villi and crypts. Numerous gaps were found in postcapillary venules and collecting venules, and plasma extravasation was observed in the serosa and tunica muscularis rat small intestine after LPS. Extensive plasma extravasation occurred in earier phases (5-30 min). However, numerous goblet cells started to discharge mucus granules 30 min after LPS treatment. A large amount of extracellular mucus was accumulated between intestinal villi 1 hour after LPS stimulation. Pretreatment with atropine, the muscarinic receptor antagonist, significantly inhibited goblet cell secretion. The inhibitory effect of pretreatment with atropine or bilateral cervical vagotomy on LPS-induced plasma leakage was not consistent. It is concluded that the plasma leakage and goblet cell hypersecretion induced by endotoxin shock was time-dependent and was associated with activation of muscarinic cholinergic receptors.
目次 Table of Contents
目錄 (Index)

【中文摘要】---------------------------------------------------------------1
【Abstract】---------------------------------------------------------------3
【緒論】-------------------------------------------------------------------5
【研究目的】---------------------------------------------------------------13
【材料與方法】-------------------------------------------------------------14
【實驗結果】---------------------------------------------------------------21
【討論】-------------------------------------------------------------------26
【結論】-------------------------------------------------------------------31
【參考文獻】---------------------------------------------------------------32
【圖】---------------------------------------------------------------------41
參考文獻 References
【參考文獻】

Auphan N., DiDonato J.A., Rosette C., Helmberg A., Karin M. (1995). Immunosuppression by glucocorticoids: inhibition of NF-κ B activity through induction of Iκ B synthesis. Science 270: 286–290

Baluk P., Fine N.W., Thomas H.A., Wei E.T., McDonald D.M. (1998). Anti-inflammatory mystixin peptides inhibit plasma leakage without blocking endothelial gap formation. J. Pharmacol. Exp. Ther. 284: 693-699

Basbaum J.H. (1986). Regulation of airway secretory cells. Clinic. Chest Med. 7: 231-237

Belley A, Chadee K. (1999). Prostaglandin E(2) stimulates rat and human colonic mucin exocytosis via the EP(4) receptor. Gastroenterology 117: 1352–1362

Besedovsky H., Sorkin E., Dinarello C.A. (1986). Immunomatory regulatory feedback between interleukin-1 and glucocorticoid horsynthesis mones. Science 233: 652–654

Bone R.C. (1991). The pathogenesis of sepsis. Ann. Intern. Med. 115: 457-469

Borovikova L.V., Ivanova S., Zhang M., Yang H., Botchkina G.I., Watkins L.R., Wang H., Abumrad N., Eaton J.W., Tracey K.J. (2000). Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405: 458–462

Breeze R.G., Wheeldon E.B. (1977). The cells of the pulmonary airways. Am Rev. Respir. Dis. 116 (4): 705-777

Dantzer R., Bluthe R.M., Laye S., Bret-Dibat J.L., Parnet P., Kelley K.W. (1998). Cytokines and sickness behavior. Ann. NY Acad. Sci. 840: 586-590

Deitch E. (1990). Bacterial translocation of the gut flora. J. Trauma. 30 (12): S184-S189

Friedman E.M., Irwin M.R. (1997). Modulation of immune cell function by the autonomic nervous system. Pharmacol. Ther. 114 (1): 27-28

Fujii E., Trie K., Ogawa A., Ohba K., Muraki T. (1996). Role of nitric oxide and prostaglandins in lipopolysaccharide-induced increase in vascular permeability in mouse skin. Eur. J. Pharmacol. 297 (3): 257-263

Furuya S., Naruse S., Hayakawa T. (1998). Intravenous injection of guanylin induces mucs secretion from goblet cells in rat duodenal crypts. Anat. Embryol. 197: 359-367

Gabaldon M. (1987). Methodological approaches for the study of aortic endothelium of the rat. Atherosclerosis 65: 139-149

Gail D.B., Lenfant C.J.M. (1983). Cell of the lung: biology and implication. Am. Respir. Dis. 127 (3): 366-387

Gaykema R.P., Goehler L.E., Tilders F.J., Bol J.G., McGorry M., Fleshner M., Maier S.F., Watkins L.R. (1998). Bacterial endotoxin induces fos immunoreactivity in primary afferent neurons of the vagus nerve. Neuroimmunomodulation 5: 234–240

Garal M., Balsa D., Ferrando R., Merlos M., Garaia R.J., Forn J. (1996). Effects of UR-12633, a new antagonist of platelet-activating factor, in rodent models of endotoxic shock. Br. J. Pharmacol. 118 (5): 1223-1231

Goehler L.E., Gaykema R.P., Hammack S.E., Maier S.F., Watkins L.R. (1998). Interleukin-1 induces c-Fos immunoreactivity in primary afferent neurons of the vagus nerve. Brain Res. 804: 306-310

Guo J.J., Huang H.T., Wang D.S. (2003). Spontaneous remission of edema and regranulation of goblet cells in rat trachea after capsaicin-induced acute inflammation. Anat. Embryol. (Berl) 206 (4): 301-309

Hansen M.K., Taishi P., Chen Z., Krueger J.M. (1998). Vagotomy blocks the induction of interleukin-1 β (IL-1β) mRNA in the brain of rats in response to systemic IL-1β. J. Neurosci. 18: 2247–2253

Hori T., Katafuchi T., Take S., Shimizu N., Niijima A. (1995). The autonomic nervous system as a communication channel between the brain and the immune system. Neuroimmunomodulation 2: 203-215

Huang H.T. (1989). Changes in epithelial secretory cells and potentation of neurogenic inflammation in the trachea of rats with respiratory tract infections. Anat. Embryol. 180: 325-341

Huang H.T., Huang S.H., Luor Y.G. (1995). Postvagotomy changes in neurogenic plasma extravasation in rat bronchi. J. Auton. Nerv. Syst. 55 (1-2): 9-17

Hwang T., Huang H.T., Tsao C.F. (1999). Thoracic vagus section distal to the recurrent laryngeal nerve reduces substance P-immunoractive innervation in the rat bronchial tree. Anat. Embryol. 200: 153-160

Kan Y.H., Brummel S.E., Lee C.H. (1996). Differential effects of transforming growth factor-beta 1 on lipopolysaccharide induction of endothelial adhesion molecules. Shock 6 (2): 118-125

Kapcala L.P., Chautard T., Eskay P. (1995). The protective role of the hypothalamic–pituitary–adrenal axis against lethality produced by immune, infectious, and inflammatory stress. Ann. NYAcad. Sci. 771: 419–437

Laye S., Bluthe R.M., Kent S., Combe C., Medina C., Parnet P., Kelley K., Dantzer R. (1995). Subdiaphragmatic vagotomy blocks induction of IL-1 b mRNA in mice brain in response to peripheral LPS. Am. J. Physiol. 268: R1327–R1331

Lundberg J.M., Saria A. (1982). Capsaicin-sensitive vagal neurons involved in control of vascular permeability in rat trachea. Acta Physiol Scand. 115 (4): 521-523
Lundblad L., Saria A., Lundberg J.M., Anggard A. (1983). Increased vascular permeability in rat nasal mucosa induced by substance P and stimulation of capsaicin-sensitive trigeminal neurons. Acta. Otolaryngol. 96 (5-6): 479-484

Lundin E., Zhang J.X., Huang C.B., Reutervig C.O., Hallmans G., Nyren C., Nygren C., Stenling R. (1993). Oat bran, rye bran, and soybean hullincrease goblet cell volume density in the small intestine of the golden hamster. A histochemical and stereologic light-microscorp study. Scand. J. Gastroenterol. 28 (1): 15-22

Majno G., Palade G.E., Schoefl G. (1961). Studies on inflammation. II. The site of action of histamine and serotonin along the vascular tree: a topographic study. J. BioPhys. Biochem. Cytol. 11: 607-626

Martensson L., Davidsson B., Hultkvist U. (1989). Model of pulmonary extravasation as an effect of neutropenia in endotoxic shock in guinea pigs. Eur. Surg. Res. 21 (6): 319-326

McCuskey R., Urbaschek R., Urbaschek B. (1996). The microcirculation
during endotoxemia. Cardiovasc. Res. 32: 752-763

McDonald D.M. (1988). Neurogenic inflammation in the rat trachea. I. Changes in venules, leukocytes, and epithelial cells. J. Neurocytol. 17: 583-603

McDonald D.M., Schoeb T.R., Lindsey J.R. (1991). Mycoplasma pulmonis infections cause long-lasting potentiation of neurogenic inflammation in the respiratory tract of the rat. J. Clin. Invest. 87: 787-799

McDonald D.M. (1994). Endothelial gaps and permeability of venules in rat tracheas exposed to inflammatory stimuli. Am. J. Physiol. 266: 61-83

Nathan C.F. (1987). Secretory products of macrophages. J. Clin. Invest. 79: 319-326

Neutra M.R., O’Malley L.J., Specian R.D. (1982). Regulation of intestinal goblet cell secretion. 2. A survey of potential secretagogues. Am. J. Physiol. 242 (4): G380-G387

Niijima A. (1996). The afferent discharges from sensors for interleukin 1β in the hepatoportal system in the anesthetized rat. J. Auton. Nerv. Syst. 61: 287-291

Phillips T.E. (1992). Both crypt and villus intestinal goblet cells secrete mucin in reponse to cholinergic stimulation. Am. J. Physiol. 262 (2 Pt 1): G327-G331

Piedimonte G., McDonald D.M., Nadel J.A. (1990). Glucocorticoids inhibit neurogenic plasma extravasation and prevent virus-potentiated extravasation in the rat trachea. J. Clin. Invest. 86 (5): 1409-1415

Plaisancie P., Barcelo A., Moro F., Claustre J., Chayvialle J.A., Cuber J.C. (1998). Effects of neurotransmitters, gut hormones, and inflammatory mediators on mucus discharge in rat colon. Am. J. Physiol. 275: 1073–1084

Rangel-Frausto M., Pittet D., Costigan M., Hwang T., Davis C., Wenzel R. (1995). The natural history of the systemic inflammatory response syndrome (SIRS). JAMA. 273 (2): 117-123

Rietschel E., Holst O., Brade L., Muller-Loennies S., Mamat U., Zahringer U., Beckmann F. (1996). Bacterial endotoxin: chemical constitution, biological recognition, host response, and immunological detoxification. Curr. Top Microbiol. Immunol. 216: 39-81

Roger D.F. (1994). Airway goblet cells: Responsive and adaptable front-line defender. Eur. Respir. J. 7: 1960-1976

Romanovsky A.A., Simons C.T., Szekely M., Kulchitsky V.A. (1997). The vagus nerve in the thermoregulatory response to systemic inflammation. Am. J. Physiol. 273: R407-R413

Salvemini D., Wang Z.Q., Wyatt P.S., Bourdon D.M., Marino M.H., Manning P.T., Currie M.G. (1996). Nitric oxide: a key mediator in the early and late phase of carrageenan-induced rat paw inflammation. Br. J. Pharmacol. 118: 829-838

Saria A., Lundberg J.M., Hua X., Lembeck F. (1983). Capsaicin-induced substance P release and sensory control of vascular permeability in the guinea-pig ureter. Neurosci. Lett. 41 (1-2): 167-172

Specian R.D., Neutra M.R. (1982). Regulation of intestinal goblet celll secretion. I. Role parasympathetic stimulation. Am. J. Physiol. 242 (4): G370-G379

Steiger D.J., Hotchkiss J., Bajaj L., Harkema J., Basbaum C. (1995). Concurrent increases in the storage and release of mucin-like molecules by rat airway epithelial cells in response to bacterial endotoxin. Am. J. Respir. Cell Mol. Biol. 12: 307-314

Takeyama K., Tamaoki J., Nakata J., Konno K. (1996). Effect of oxitropium bromide on histamine-induced airway goblet cell secretion. Am. J. Respir. Crit. Care Med. 154: 231-236

Tracey K.J., Beutler B., Lowry S.F., Merryweather J., Wolpe S., Milsark I.W., Hariri R.J., Fahey 3rd T.J., Zentella A., Albert J.D., Cerami A. (1986). Shock and tissue injury induced by recombinant human cachectin. Science 234: 470–474

Tseng W.Y., Tsao C.F., Ko C.C., Huang H.T. (2001). Local capsaicin application to the stellate ganglion and satellatectomy attenuate neurogenic inflammation in rat bronchi. Auton. Neurosci. 94 (1-2): 25-33

Weibel E.S. (1979). Stereological Methods Vol. 1; Practical Methods for Biological Morphometry. Academic Press, London.

Xiao B.G., Link H. (1998). Immune regulation within the central nervous system. J. Neurol. Sci. 157: 1-12

郭晉章 (1996). Study on goblet cell mucogenesis and edema elimination in the trachea of rats following inflammation induced by capsaicin or histamine.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code