Responsive image
博碩士論文 etd-0715103-171441 詳細資訊
Title page for etd-0715103-171441
論文名稱
Title
刺激胃迷走神經對貓呼吸及嘔吐期間膈神經活動的影響
Effect of Gastric Vagus Stimulation on the Phrenic Nerves Activity during Respiration and Vomiting in Cat
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
53
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-07-08
繳交日期
Date of Submission
2003-07-15
關鍵字
Keywords
膈神經、胃迷走神經、嘔吐
vagus, vomiting, phrenic nerves
統計
Statistics
本論文已被瀏覽 5721 次,被下載 2600
The thesis/dissertation has been browsed 5721 times, has been downloaded 2600 times.
中文摘要
摘要
本實驗以貓為材料, 於動物正常呼吸及誘發嘔吐期間分
別以電極刺激其迷走神經,觀察動物膈神經及腹肌運動神經的
反應( 膈神經及腹肌運動神經分別控制的膈肌及腹肌的活動,
是控制呼吸及嘔吐的主要肌肉), 據以探究呼吸及嘔吐兩種活
動之動作產生中樞( CPG) 之調控特性。貓在麻醉狀況下進行
氣管插管、動靜脈插管、及去大腦手術後, 注射肌肉鬆弛劑並
以人工幫浦輔助其呼吸。貓在正常呼吸狀況下,其膈神經與腹
肌運動神經之放電活動交互起落。膈神經放電活動長度平均為
0.79 ± 0.07 秒, 活動週期平均為2.55 ± 0.13 秒, 頻譜峰值分佈在
85~95 Hz 附近。刺激胃迷走神經, 膈神經放電活動長度變為
0.75 ± 0.06sec, 活動週期為2.25 ± 0.13sec, 此二值均比刺激之前
為短, 頻譜峰值分佈則向右移至100~110 Hz 附近。誘發嘔吐
後, 膈神經放電活動週期縮短, 放電幅度加大, 而且動物之膈
神經與腹肌運動神經的放電活動從交互放電方式轉變為同步
放電的型態。成功誘發嘔吐之動物, 膈神經放電活動長度平均
為0.22 ± 0.03 sec, 比呼吸時短; 其神經活動週期為0.54 ± 0.08,
也比呼吸時短; 頻譜峰值則分佈在100~120 Hz 附近, 高於呼
吸時的頻譜峰值。若於此時刺激胃迷走神經, 可使其活動週期
增長為0.74 ± 0.05 秒頻譜峰值則右移至120~150 Hz 附近。以上
結果顯示, 控制嘔吐的CPG 有別於控制呼吸的CPG, 然而兩
組CPG 皆受相同輸入訊號的影響( 即刺激胃迷走神經所產生
的上傳輸入訊號的影響)而改變它所控制的輸出端活動( 包括
兩CPG 所控制的膈神經放電活動, 活動週期及頻譜峰值的分
佈)。故推論組成上述二CPG 的神經網絡可能重疊。或者, 二
CPG 共用一組特殊的神經網路在平時主導呼吸的運作, 為控
制呼吸的CPG; 當誘發嘔吐時則強勢抑制呼吸活動, 驅動呼
吸運動神經及肌肉, 執行嘔吐之運作, 成為控制嘔吐的CPG。
Abstract
A B S T R A C T
The purposes of this study were: (a) to compare the effect of
gastric vagal stimulation on phrenic nerve activity during respiration
and fictive vomiting, (b) to evaluate the modulatory effect of the
central pattern generators (CPGs) for respiration and vomiting
following peripheral inputs from gastric vagus.
Decerebrate, paralyzed, and ventilated cats were used in this
study. Vomiting was induced by electric stimulation of the gastric
vagus or injection of emetic drugs (e.g. apomorphine). Fictive
vomiting was identified by a characteristic series of synchronous
bursts of phrenic nerves and abdominal nerves.
During respiratory phase, the average duration of the phrenic
nerve activity was 0.79 ± 0.07 second. The average duration of the
phrenic cycles was 2.55 ± 0.13 second. Spectral analysis indicated
that the phrenic activation had high frequency oscillation of 85~95 Hz.
Gastric vagus stimulation (100 Hz, 300 mA) during respiratory phase
lead to a deviation of the phrenic duration of -0.04 seconds. The
duration of phrenic cycles was also decreased (reduced 0.25 seconds).
The spectral distribution of the phrenic neurogram was also shifted
during gastric vagal stimulation (dextral to 100~110 Hz).
During vomiting phase, the average duration of the phrenic
activity was 0.22 ± 0.03 seconds which was shorter than that during
respiratory phase. The duration of the phrenic cycle during vomiting
was 0.54 ±0.08 second. The major distribution of the power
spectrum of the phrenic neurogram during vomiting was 100~120 Hz
which is apparently higher than that during the respiratory phase.
Gastric vagus stimulation during vomiting showed an averagely
increased phrenic cycle (0.74 ± 0.05 seconds), and a shift of its
spectral distribution (dextral to 120~150 Hz).
These results suggest that vomiting and respiration were
controlled by separate CPGs. Since the output of these two CPGs
can be modified by a common peripheral signal such as stimulatary
input signal from the gastric vagus, it is postulated that these two
CPGs might be highly overlaped. Alternatively, they might be
equipped with a single neural network while possessing two separate
functions. Normally, this naural network will presume respiratory
function, once properly stimulated, such as by injecting apomorphine
or by chronic electric stimulation of gastric vagus, functions of this
neural network, driving same set of motor fibers (diaphragm and
abdominal muscles), will be shifted from respiratory control to
vomiting phase control.
目次 Table of Contents
目錄
頁次
誌謝------------------------------------------------- I
中文摘要-------------------------------------------- II
英文摘要-------------------------------------------- IV
目錄----------------------------------------------- VII
圖表目錄------------------------------------------ VIII
文獻回顧----------------------------------------------1
實驗目的-------------------------------------------- 12
實驗材料與方法-------------------------------------- 13
結果------------------------------------------------ 25
討論------------------------------------------------ 31
結論------------------------------------------------ 37
參考文獻-------------------------------------------- 38
圖表------------------------------------------------ 43
參考文獻 References
文獻
Berger A .J. (1977) Dorsal respiratory group neurons in the medulla of cat: spinal
projections, responses to lung inflation and superior laryngeal nerve stimulation. Brain Res.
135: 231-254.
Bianchi A. L., Denavit-Saubié M., Champagnat J. (1995) Central control of breathing in
mammals: neuronal circuitry, membrane properties, and neurotransmitters. Physiol. Rev. 75:
1-45.
Borison H. L., and Wang S. C. (1949) Functional localization of central coordinating
mechanism for emesis in cat. J. Neurophysiol. 12:305-313.
Borison H. L., and Wang S. C. (1953) Physiology and pharmacology of vomiting.
Pharmacol. Rev. 5: 192-230.
Bruce E. N., Euler C. V., Romaniuk J. K., and Yamashiro S. M. (1982) Bilateral reflex
effects on phrenic nerve activity in response to single-shock vagal stimulation. Acta Physiol.
Scand. 116: 351-362.
Carpenter D. O. (1989) Central nervous system mechanisms in deglutition and emesis. In:
Handbook of physiology; Section: The Gastrointestional system, Vol. I, edit by F. E. Bloom.
pp. 685-714. American Physiological Society, Bethesda, Maryland.
Carpenter D. O. (1990) Neural mechanisms of emesis. Can. J. Physiol. Pharmacol. 68:
230-236.
Choen M. I. (1979) Neurogenesis of respiratory rhythm in the mammal. Physiol. Rev.
59: 1105-1173.
Cohen M. I., Miller A. D., Branhardt R., and Shaw C.-F. (1992) Weakness of short-term
synchronization among respiratory nerve activities during fictive vomiting. Am. J. Physiol.
263: R339-R347.
Duffin J., and Lipski J. (1987) Monosynaptic excitation of thoracic motoneurones by
inspiratory neurons of the nucleus tractus solitarius in the cat. J. Physiol. 390: 415-431.
Euler C. V., Hayward J. N., Marttila I., and Wyman R. J. (1973) Respiratory neurons of
the ventrolateral nucleus of the solitary tract of cat: vagal input, spinal connections and
morphological identification. Brain Res. 61: 1-22.
Feldman J. L. (1986) Neurophysiology of breathing in mammals, In: Handbook of
physiology; Section: The nervous system, Vol. IV, edited by F. E. Bloom. pp. 463-524.
American Physiological Society, Bethesda, Maryland.
Fedorko L., and Merrill E. G.. Axonal projections from the rostral expiratory neurons of the
Bötzinger complex to medulla and spinal xord in the cat. J. Physiol. 350: 487-496.
Fukuda H., and Koga T. (1991) The Bötzinger complex as the pattern generator for
retching and vomiting in the dog. Neurosci. Rew. 12: 471-485.
Fukuda H., and Koga T. (1992) Non-respiratory neurons in the Bötzinger complex
exhibiting appropriate firing patterns to generate the emetic act in dogs. Neurosci. Rew. 14:
180-194.
Fukuda H., and Koga T. (1997) Neuronal gagging activity patterns may be generated by
neurons in the reticular area dorsomedial to the retrofacial nucleus in dogs. Exp. Brain Res.
113: 394-401.
Hogan C. M. (1990) Advances in the management of nausea and vomiting. Nurs. clin.
North Am. 25: 475-497.
Hornby P. J. (2001) Central neurocircuitry associated with emesis. Am. J. Med. 111:
106S-112S.
Jiang C., and Lipski J. (1990) Extensive monosynaptic inhibition of ventral respiratory
group neurons by augmenting neurons in the Bötzinger complex.. Exp. Brain Res. 81:
639-648.
Kalia M. P. (1981) Anatomical organization of central respiratory neurons. Ann. Rev.
Physiol. 43: 105-120.
Kalia M., Feldman J. L., and Cohen M. I. (1979) Afferent projections to the inspiratory
neuronal region of the ventrolateral nucleus of the tractus solitarius in the cat. Brain Res.
171: 135-141.
Koga T. (1991) Discharge patterns of bulbar respiratory neurons during retching and
vomiting in decerebrate dogs. Jpn. J. Physiol. 41: 233-249.
Koga T., and Fukuda H. (1992) Neurons in the nucleus of the solitary tract mediating
inputs from emetic vagal afferents and the area postrema to the pattern generator for the
emetic act in dogs. Neurosci. Res. 14: 166-179.
Koga T., and Fukuda H. (1994) Bulbospinal augmenting inspiratory neurons may
participate in contractions of the diaphragm during vomiting in decerebrate dogs. Neurosci.
Lett. 180: 257-260.
Koga T., Qu R. –Y., and Fukuda H. (1998) The central pattern generator for vomiting
exist in the reticular area dorsomedial to the retrofacial nucleus in dogs. Exp. Brain Res.
118: 139-147.
McCarthy L. E., Borsion H. L., and Friedlander R. M. (1974) Vomiting: radiographic and
oscillographic correlates in the decererate cat. Gastroenterology 67: 1126-1130.
Merrill E. G., and Fedorko L. (1984) Monosynaptic inhibition of phrenic motoneurons: a
ong descending projection from Bötzinger neurons. J. Neurosci. 4: 2350-2353.
Miller A. D., and Wilson V. J. (1983a) ‘Vomiting center’ reanalyzed: an electrical
stimulation study. Brain Res. 270: 154-158.
Miller A. D., and Wilson V. J. (1983b) Vestibular-induced vomiting after
vestibulocerebellar lesions. Brain Behav. Evol. 23: 26-31.
Miller A. D., Ezure K., and Suzuki I. (1985) Control of abdominal muscles by brain stem
respiratory neurons in the cat。J. Neurophysiol. 54: 155-167.
Miller A. D., Tan L. K., and Suzuki I. (1987) Control of abdominal and Expiratory
intercostals muscle activity during vomiting: role of ventral respiratory group expiratory
neurons. J. Neurophysiol. 57: 1854-1866.
Miller A. D. (1988) Respiratory muscle control during vomiting. Can. J. Physiol.
Pharmacol. 68: 237-241.
Miller A. D., and Nonaka S. (1990) Bötzinger expiratory neurons may inhibit phrenic
moroneurons and medullary inspiratory neurons during vomiting. Brain Res. 521: 352-354.
Miller A. D., Nonaka S., Lakos S. F., and Tan L. K. (1990) Diaphragmatic and external
intercostals muscle control during vomiting: behavior of inspiratory Bulbospinal neurons. J.
Neurophysiol. 63: 31-36.
Miller A. D., and Ezure K. (1992) Behavior of inhibitory and excitatory propriobulbar
respiratory neurons during fictive vomiting. Brain Res. 578: 168-176.
Miller A. D., and Yates B. J. (1993) Evaluation of role of upper cervical inspiratory
neurons in respiration, emesis and cough. Brain Res. 606: 143-147.
Miller A. D., and Leslie R. A. (1994) The area postrema and vomiting. Front.
Neuroendocrinol. 15: 301-320.
Miller A. D., Nonaka S., and Jakus J. (1994) Brain areas essential or non-essential for
emesis. Brain Res. 647: 255-264.
Miller A. D., and Ruggiero D. A. (1994) Emetic reflex arc revealed by expression of the
immediate-early gene c- fos in the cat. J. Neurosci. 14: 871-888.
Miller A. D., Nonaka S., Siniaia, M. S., and Jakus J. (1995) Mutifunctional ventral
respiratory group: Bulbospinal expiratory neurons play a role in pudendal discharge during
vomiting. J. Auton. Nerv. Syst. 54: 253-260.
Miller A. D. (1999) Central mechanisms of vomiting. Dig. Dis. Sci. 44: 39S-43S.
Nakazawa K., Umezaki T., Zhehg Y., and Miller A. D. (1999) Behaviors of bulbar
respiratory interneurons during fictive swallowing and vomiting. Otolaryngol . Head. Neck.
Surg. 120: 412-418.
Nonaka S., and Miller A. D. (1991) Behavior of upper cervical inspiratory propriospinal
neurons during fictive vomiting. J. Neurophysiol. 65: 1492-1500.
Rikard-Bell G. C., and Bystrzycka E. K., and Nail B. S. (1984) Brainstem projections to
the phrenic nucleus: a HRP study in the cat. Brain Res. Bull. 12: 469-477.
Wang S. C., and Borison H. L. (1950) The vomiting center. Arch. Neuro. Phtchiat. 63:
928-941.
Wang S. C., and Borison H. L. (1951a) Copper sulphate emesis: a study of afferent
pathways from the gastrointestinal tract. Am. J. Physiol. 164: 520-526.
Wang S. C., and Borison H. L. (1951b) The vomiting center: its destruction by radon
implantation in dog medulla oblongata. Am. J. Physiol. 166: 712-717.
Wang S. C., and Borison H. L. (1952) A new concept of organization of the central emetic
mechanism: recent studies on the sites of action of apomorphine, copper sulfate and cardiac
glycosides. Gastroenterology 22: 1-12.
Zheng Y., Umezaki T., Nakazawa K., and Miller A. D. (1997) Role of pre- inspiratory
neurons in vestibular and laryngeal reflexes and in swallowing and vomiting. Neurosci.
Lett. 225: 161-164
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code