Responsive image
博碩士論文 etd-0715104-015852 詳細資訊
Title page for etd-0715104-015852
論文名稱
Title
氮化鎵藍光發光二極體增強光強度之研究
Enhancement of Light Extraction of GaN Blue Light Emitting Diode
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
83
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-07-09
繳交日期
Date of Submission
2004-07-15
關鍵字
Keywords
光阻微透鏡、反射鏡、覆晶技術、氮化鎵發光二極體
GaN LED, Reflector, Phororesist Microlenses, Flip-Chip technique
統計
Statistics
本論文已被瀏覽 5717 次,被下載 57
The thesis/dissertation has been browsed 5717 times, has been downloaded 57 times.
中文摘要
近年來,氮化鎵系列藍光發光二極體的發光效率隨著磊晶技術的發展已持續增加到約20(流明/瓦)左右,但此發光效率和傳統照明系統(100流明/瓦)相比仍低了許多。我們可藉由改善藍光發光二極體的光取出方式來增加其發光效率,製作高亮度的藍光發光二極體。
在本研究中,我們利用覆晶技術(Flip-Chip technique)、反射鏡、光阻微透鏡(Photoresist Microlenses)及熱電致冷器來增加氮化鎵多重量子井發光二極體的光取出效率。並以電激發光(Electroluminescence)光譜及空間功率分布計量測發光二極體的發光強度。藉由變溫之電流-電壓(I-V)特性量測,我們亦針對氮化鎵多重量子井發光二極體在不同偏壓下的載子傳輸機制進行討論。
由實驗結果可得知,具有鋁/二氧化矽(Al/SiO2)反射鏡的背面發光二極體,其在90度角的發光強度為3.28μW,比正面發光二極體的強度(2.73μW)來的大許多。在背面具有光阻微透鏡(折射係數,n =1.62)結構的發光二極體可提高光取出效率達1.2倍。光取出效率的增加是由於背面發光二極體金屬吸光的效應減少以及在氮化鎵/空氣介面的Fresnel’s傳輸損失降低之緣故。
最後,我們製作一個具有增強光取出結構的發光二極體,其發光強度較傳統藍光發光二極體增加1.25倍。因此,我們可利用此結構的發光二極體製作成陣列,獲得一高光取出效率及高亮度的照明系統。
Abstract
In recent years, even though the light output of GaN-based LED continues to increase, the brightness (~20 lm/W) is still low compared to conventional lighting systems and it is necessary to further improve the light extraction of LEDs.
In this study, we utilize flip-chip technique, photoresist microlenses, reflectors and thermoelectric cooler to increase the light extraction of GaN MQW LED. Electroluminescence (EL) and power angular distribution are used to measure the light output intensity of LED. From temperature dependent current-voltage (I-V-T) characteristics, the charge carrier transport mechanisms at different biased regions are also investigated.
In the results, back emission of LED with SiO2/Al reflector has maximum light intensity ( 3.28μW ) , which is higher than front emission one ( 2.73μW ) in vertical emitting area ( at 90 angles). LED with P.R. microlenses (refractive index, n=1.62) on backside could improve the light extraction of LED (about 1.2 times) as well. The enhancement of light output is duo to the reduction of light absorption from the metal contact and Fresnel’s transmission losses at GaN (n=2.4)/air (n=1) interface.
Finally, we fabricate a high brightness LED with above light enhancement design. EL intensity of LED is increased about 1.25 times than conventional one. Therefore, we can manufacture a LEDs array with above designs to obtain high light output for future solid-state illumination.
目次 Table of Contents
CONTENTS………………………………………………………………I
LIST OF FIGURES…………………………………………………..…III
LIST OF TABLES………………………………………………..….......V
ABSTRACT………...………………………………………………......VІ

CHAPTER 1 INTRODUCTION
1.1 Evolution and Applications of Light Emitting Diodes…………… ..1
1.1.1 Evolution of Light Emitting Diodes…………………………..2
1.1.2 Prospects of White LEDs Lighting……………………………3
1.2 Structure and Problems of GaN Blue Light Emitting Diodes………4
1.2.1 Structure of GaN Blue Light Emitting Diodes………………..4
1.2.2 Problems of GaN Blue Light Emitting Diodes for White
Lighting……………………………………………………….6
1.3 Enhancement of Light Extraction of GaN MQW Light Emitting
Diodes………………………………………………………………8
1.3.1 Microlens……………………………………………………..9
1.3.2 Flip-Chip Technology……………………………………….10
1.3.3 Thermoelectric Cooler…………………………..……….........12

CHAPTER 2 EXPERIMENT
2.1 Equipment for Various Temperatures Measurements……………..14
2.2 Equipment of Power Angular Distribution Measurements………..15
2.2.1 Fabrication of Reflector……………………………………...16
2.2.2 Fabrication of Edge Emission LED………………….………17
2.3 Refractive Layers for Electroluminescence Enhancement………...17
2.4 Photoresist Microlenses for Electroluminescence Enhancement........18
2.5 Enhancement of Light Extraction of LEDs………………………..19
CHAPTER 3 RESULTS AND DISCUSSION
3.1 Temperature-dependent Characteristics of LEDs…………...............20
3.1.1 Current-Voltage Characteristics—Basic Theory…………...........21
3.1.2 Current-Voltage Characteristics of GaN MQW LED……........23
3.1.3 Electroluminescence Measurements……………………….25
3.1.4 Photoluminescence Properties of GaN films……………….26
3.2 Power Angular Distribution of GaN MQW LEDs with Different Reflectors… …………………………………………………….....30
3.2.1 LEDs with Al/SiO2 Reflector…………………………….....31
3.2.2 LEDs with SiO2/Al Reflector………………………………...32
3.2.3 Edge Emission LEDs…………………………………………34
3.3 Electroluminescence Measurements of LEDs with Different Refraction Index Layers……………………………………….....35
3.3.1 Front Emission LED with TiO2 Refraction Layer…………35
3.3.2 Front Emission LED with TiO2/SiO2 Refraction Layers …36
3.3.3 Back Emission LED with SiO2 Refraction Layer…………36
3.4 Electroluminescence Measurements of GaN MQW LEDs with
Photoresist Microlenses…………………………………………..37
3.4.1 Effect on Baking Treatment of Photoersist Microlenses…...37
3.4.2 Effect on Geometry of Photoresist Microlenses…………...38
3.5 High Brightness GaN MQW LEDs……………………………….. 38

CHAPTER 4 CONCLUSIONS…………………………………….40

FIGURES……………………………………………………….......42~74
TABLES………………………………………………………….75~77
REFERENCES……………………………………………….......78~83
參考文獻 References
[1] N. Holonyak, Jr., and S.F. Bevacqua, “ Coherent (visible) light emission from Ga(As1-xPx) junctions,” Appl. Phys. Lett., vol. 1, pp. 82-83, 1962.
[2] F.A. Kish, F.M. Steranka, D.C. Defevere, D.A. Vanderwater, K.G. Park, C.P. Kuo, T.D. Osentowski, M.J. Peanasky, J.G. Yu, R.M. Fletcher, D.A. Steigerwald, M.G. Craford, and V. M. Robbins,” Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett., vol. 64, pp. 2839-2841, 1994.
[3] S.Nakamura, T. Mukai, and M. Senoh,” Candela-class high brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett., vol. 64, pp. 1687-1689, 1994.
[4] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai,”Superbright Green InGaN Single-Quantum-Well-Structure Light-Emitting Diodes,” Jpn. J. Appl. Phys., vol. 34, L1332-1335, 1995.
[5] M. Koike, S. Yamasaki, S. Nagai, N. Koide, S. Asami, H. Amano and I. Akasaki,” High-Quality Gainn/GaN Multiple-Quantum Wells,”Appl. Phys. Lett., vol. 68, pp. 1403-1405,1996.
[6] A.Y. Kim, W. Goetz, D.A. Steigerwald, J.J. Wierer, N.F. Gardner, J. Sun, S.A. Stockman, P.S. Martin, M.R. Krames, R.S. Kern, and F. M. Steranka,” Performance of High-Power AlInGaN Light Emitting Diodes,” phys. stat. sol. (a), vol. 188, pp. 15-21, 2001.
[7] C.W. Tang and S. A. VanSlyke,” Organic electroluminescent diodes,”
Appl. Phys. Lett., vol. 51, pp. 913-915, 1987.
[8] L.S. Hung and C.H. Chen, “ Recent progress of molecular organic electroluminescent materials and devices,” Materials Science and Engineering R-Report, vol. 39, pp 143-222, 2002.
[9] F. M. Steranka, J. Bhat, D Collins and L. Cook et al.,” High Power LED -Technology Status and Market Applications,” Phys. Stat. Sol. (a), vol. 194, pp. 380-388, 2002.
[10] W. Xie, D.C. Grillo, R.L. Gunshor, M. Kobayashi, H. Jeon, J. Ding, A.V. Nurmikko, G.C. Hua, N. Otsuka,” Room temperature blue light emitting p-n diodes from Zn(S,Se)-based multiple quantum well structures,” Appl. Phys. Lett., vol. 60, pp. 1999-2001, 1992.
[11] J. H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackay, R.H. Friend, P.L. Burns, A.B. Holmes, “ Light-emitting diodes based on conjugated polymers,” Nature, vol. 347, p.539-541, 1990.
[12] A. Mills, “ Trends in HB-LED markets,” III-Vs Review, vol. 14, pp. 38-42, 2001.
[13] B. Damilano, N. Grandjean, C. Pernot, and J. Massies, “ Monolithic white light emitting diodes based on InGaN/GaN multiple-quantum
wells,” Jpn. J. Appl. Phys., vol. 40, L 918-920, 2001.
[14] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Mukai, Y. Sugimoto, and H. Kiyoku, “ Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes,” Appl. Phys. Lett., vol. 69, pp. 4056-4058, 1996.
[15] T. Tamura, T. Setomoto and Taguchi, “ Fundamental characteristics of the illuminating light source using white LED based on InGaN semiconductors,” Tran. IEE Japan, vol. 120, pp.244-249, 2000.
[16] T. Taguchi, “ Technological innovation of high-brightness light emitting diode (LEDs) and a view of white LED lighting system,” Optronics, vol. 19, pp.120-125, 2000.
[17] T. Nakamura and T. Takebe, “ Development of ZnSe-based white Light emitting diodes,” Optronics, vol. 19, pp.126-131, 2000.
[18] A. Mills,” High-brightness LEDs lighting up the future” III-Vs Review, vol. 14, pp. 32-37, 2001.
[19] T. Komine, M .Nakagawa,” Integrated system of white LED visible-light communication and power-line communication,” IEEE Transactions on Consumer Electronics, vol. 49, pp. 71-79, 2003.
[20] S. Nakamura and G. Fasol, The Blue Laser Diode ( Springer, New York ), 1997.
[21] R. Gaska, M. S. Shur, X. Hu, J. W. Yang, A. Tarakji, G. Simin, A. Khan, J. Deng, T. Werner, S. Rumyantsev, and N. Pala, “ Highly doped thin-channel GaN metal-semiconductor field-effect transistors,” Appl. Phys. Lett., vol. 78, pp. 769-771, 2001.
[22] N. Stath, V. Harle, J. Wagner,” The status and future development of innovative optoelectronic devices based on III-nitrides on SiC and on III-antimonides,” Mater. Sci. Eng. B, vol. 80, pp.224-231, 2001.
[23] I. Akasaki, H. Amano, S. Sota, H. Sakai, T. Tanaka, and M. Koike, “ Stimulated Emission by Current Injection from an AlGaN/GaN /GaInN Quantum Well Device,” Jpn. J. Appl. Phys., vol. 34, L1517-1519, 1995
[24] S. Nakamura,” III–V nitride based light-emitting devices,” Solid State Commun., vol. 102, pp.237-243, 1997.
[25] Z. D. Popovic, R. A. Sprague, and G. A. N. Connell,” Technique for monolithic fabrication of microlens arrays,” Appl. Opt., vol. 27,pp. 1281- 1284, 1988.
[26] S. Haselbeck, H. Schreiber, J. Schwider, and N. Streibl,“Microlenses
fabricated by melting a photoresist on a base layer,” Opt. Eng., vol.32, pp. 1322-1324, 1993.
[27] P. Savander, “ Microlens arrays etched into glass and silicon,” Opt. Lasers Eng., vol. 20, pp. 97-107, 1994.
[28] M. B. Stern and T. R. Jay, “ Dry etching for coherent refractive microlens arrays,” Opt. Eng., vol. 33, pp. 3547-3551, 1994.
[29] M. B. Stern, “ Pattern transfer for diffractive and refractive microoptics,” Microelectron. Eng., vol. 34, pp. 299-, 1997.
[30] M. Wakaki, Y. Komachi, and G. Kanai, “ Microlenses and microlens arrays formed on a glass plate by use of a CO2 laser,” Appl. Opt. vol. 37, pp. 627-631, 1998.
[31] G. Beadie and N. M. Lawandy, “ Single-step laser fabrication of refractive microlenses in semiconductor-doped glasses,” Opt. Lett. vol. 20, pp. 2153-2155, 1995.
[32] E.H. Park, M.J. Kim and Y.S. Kwon, “ Microlens for Efficient Coupling Between LED and Optical Fiber,” IEEE Photon. Technol. Lett., vol. 11, pp. 439–441, 1999.
[33] D. M. Rowe, Handbook of Thermoelectrics (CRC, Boca Raton, FL), 1994.
[34] A. Miner, A. Majumdar and U. Ghoshal, “ Thermoelectro mechanical refrigeration based on transient thermoelectric effects,” Appl. Phys. Lett., vol. 75, pp. 1176-1178, 1999.
[35] B. E. A. Saleh and M. C. Teisch, Fundamentals of Photonics (Wiley, New York, 1991.
[36] D Daly, R F Stevens, M C Hutleyt and N Davies, “ The manufacture of microlenses by melting photoresist,” J. Meas. Sci. Technol., vol. 1, pp. 759-766, 1999.
[37] S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New
York), 1981.
[38] H. C. Casey, Jr., J. Muth, S. Krishnankutty, and J. M. Zavada, “ Dominance of tunneling current and band filling in InGaN/AlGaN double heterostructure blue light-emitting diodes,” Appl. Phys. Lett. vol. 68, pp. 2867-2869, 1996.
[39] D. J. Dumin and G. J. Pearson, “ Properties of Gallium Arsenide Diodes between 4.2K and 300K,” J. Appl. Phys., vol. 36, pp. 3418-3426, 1965.
[40] J. B. Fedison, T. P. Chow, H. Lu, and B. Bhat, “ Electrical characteristics of magnesium-doped gallium nitride junction diodes, ” Appl. Phys. Lett. vol. 72, pp. 2841-2843, 1998.
[41] L. Hirsch and A. S. Barrière, “Electrical characterization of InGaN/GaN light emitting diodes grown by molecular beam epitaxy, “ J. Appl. Phys., vol. 94, pp. 5014-5020, 2003.
[42] J. W. P. Hsu, M. J. Manfra, D. V. Lang, S. Richter, S. N. G. Chu, A. M. Sergent, R. N. Kleiman, L. N. Pfeiffer, and R. J. Molnar, “Inhomogeneous spatial distribution of reverse bias leakage in GaN Schottky diodes ,”Appl. Phys. Lett. vol. 78, pp. 1685-1687, 2001.
[43] C. Pernot, A. Hirano, H. Amano, and I. Akasaki, “Investigation of the Leakage Current in GaN P-N Junctions” Jpn. J. Appl. Phys., vol. 37, L1202-1204, 1998.
[44] R. J. Shul, L. Zhang, A. G. Baca, C. G. Willison, J. Han, S. J. Pearton, and F. Ren, “Inductively coupled plasma-induced etch damage of GaN p-n junctions,” J. Vac. Sci. Technol., vol. 18, pp. 1139-1143, 2000.
[45] T. Ogino and M. Akoki, “Mechanism of yellow luminescence in
GaN,” J. J. Appl. Phys., vol. 19, pp. 2395-2405, 1980.
[46] T. Matilla and R. M. Nieminen, “Positron line-shape parameters and lifetimes for semiconductors: Systematics and temperature effects,” Phys. Rev. B, vol. 55, pp. 2182-2187, 1997.
[47] H. Siegle, P. Thurian, L. Eckey, A. Hoffmann, C. Thomsen, B. K. Meyer, H. Amano, I. Akasaki, T. Detchprohm, and K. Hiramatsu, “Spatially resolved photoluminescence and Raman scattering experiments on the GaN/substrate interface,” Appl. Phys. Lett. vol. 68, pp. 1265-1267 , 1996.
[48] S. Christiansen, M. Albrecht, W. Dorsch, H. P. Strunk, C. Zanotti-Fregonara, G. Salviati, A. Pelzmann, M. Mayer, P. Kamp, and K. J. Ebeling, MRS Internet J. Nitride Semicond. Res., vol. 1, p. 19, 1996.
[49] E. R. Glaser, T. A. Kennedy, H. C. Crookham, J. A. Freitas, Jr., M. Asif Khan, D. T. Olson, and J. N. Kuznia, “Observation of optically detected magnetic resonance in GaN films,” Appl. Phys. Lett., vol. 63, pp. 2673-2675, 1993.
[50] P. Perlin, T. Suski, H. Teisseyre, M. Leszczynski, I. Grzegory, J. Jun, S. Porowski, P. Boguslaski, J. Bernhole, J. C. Chervin, A. Polian, and T. Moustakes, “Towards the Identification of the Dominant Donor in GaN,” Phys. Rev. Lett., vol. 75, pp. 296-299, 1995.
[51] J. Neugebauer and C. G. Van de Walle, “Gallium vacancies and the yellow luminescence in GaN,” Appl. Phys. Lett., vol. 69, pp. 503-505, 1996.
[52] K. Saarinen, T. Laine, S. Kuisma, J. Nissila, P. Hautojarvi, L. Dobrzynski, K. Pakula, R. Stepniewski, M. Wojdak, A. Wysmolek, T. Suski, M. Leszczynski, I. Grzegory, and S. Porowski, “Observation of Native Ga Vacancies in GaN by Positron Annihilation,” Phys. Rev. Lett., vol. 79, pp. 3030-3033, 1997.
[53] E. Calleja, M. A. Sánchez-García, D. Basak, F. J. Sánchez, F. Calle, P. Youinou, and E. Muñoz, “Effect of Ga/Si interdiffusion on optical and transport properties of GaN layers grown on Si(111) by molecular-beam epitaxy,” Phys. Rev. B, vol. 58, pp. 1550-1559, 1998.
[54]D. Basak, M. Lachab, T. Nakanishi, and S. Sakai,“Effect of reactive ion etching on the yellow luminescence of GaN,” Appl. Phys. Lett., vol.75, pp.3710-3712, 1999.
[55] H. C. Yang, T. Y. Lin, M. Y. Huang, and Y. F. Chen, “Optical properties of Si-doped GaN films,” J. Appl. Phys., vol. 86, pp. 6124-6126, 1999.
[56] I.-H. Lee, J. J. Lee, P. Kung, F. J. Sanchez, and M. Razeghi, “Band-gap narrowing and potential fluctuation in Si-doped GaN,” Appl. Phys. Lett., vol. 74, pp. 102-104, 1999.
[57] C. C. Chen, K. L. Hsieh, G. C. Chi, C. C. Chuo et al., “Thermal annealing effects on stimulated emission of high-indium-content InGaN/GaN single quantum well structure,” Sol. Stat. Electron., vol. 46, pp. 1123-1126, 2002.
[58] S. Nakamura, M. Senoh and T. Mukai, “Highly P-Typed Mg-Doped GaN Films Grown with GaN Buffer Layers,” Jpn. J. Appl. Phys., vol. 30, L1708-1711, 1991.
[59] B. J. Pong , C. J. Pan, Y. C. Teng, G. C. Chi, W. H. Li, K. C. Lee, et al. “ Structural defects and microstrain in GaN induced by Mg ion implantation.,” J. Appl. Phys., vol. 83, pp. 5992-5996,1998.
[60] J. K. Sheu, Y. K. Su, G. C. Chi, W. C. Chen, C. Y. Chen, C. N. Huang, et al. “ The effect of thermal annealing on the Ni/Au contact of p-type GaN.,” J. Appl. Phys., vol. 83, pp. 3172-3175,1998.
[61] J. K. Sheu, Y. K. Su, G. C. Chi, P. L. Koh, M. J. Jou, C. M. Chang, et al.“ High-transparency Ni/Au ohmic contact to p-type GaN.,” Appl. Phys. Lett., vol. 74, pp. 2340-2342, 1999.
[62] C. Kittel, Introduction to Solid State Physics, Ch.11,7th ed. (Wiley, New York, 1996), p. 307
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.224.33.107
論文開放下載的時間是 校外不公開

Your IP address is 18.224.33.107
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code