Responsive image
博碩士論文 etd-0715104-044714 詳細資訊
Title page for etd-0715104-044714
論文名稱
Title
以雙離子束濺鍍法成長氮化鋁薄膜之特性研究
Growth and Characterization of AlN Thin Films Deposition Using Dual Ion Beam Sputtering System
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
87
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-07-03
繳交日期
Date of Submission
2004-07-15
關鍵字
Keywords
薄膜成長、雙離子束濺鍍法、氮化鋁
Dual ion beam sputtering, Aluminum nitride, Thin film
統計
Statistics
本論文已被瀏覽 5716 次,被下載 0
The thesis/dissertation has been browsed 5716 times, has been downloaded 0 times.
中文摘要
近年來氮化鋁薄膜愈來愈受到重視,原因在於其具有光電及通訊方面的應用。除了可用來作為成長藍光二極體GaN的緩衝層(buffer layer)外,最主要的通訊應用就是用來製備高頻表面聲波元件(SAW)與薄膜體波共振器(FBAR),其頻率可達GHz以上。氮化鋁為六方晶系結構 (hexagonal),由於C軸指向具有較低能量,且有良好的壓電特性,因此對於C軸指向特性的好壞有一定的要求。
本研究的目的在使用雙離子束濺鍍法(Dual Ion Beam Sputtering, DIBS)在矽基板(100)上沉積氮化鋁薄膜。雙離子束濺鍍法結合Kaufman與End-Hall兩種不同形式作為薄膜沉積的離子源。由於離子濺鍍法具有實驗參數可獨立操作及高真空度等優點,因此可藉由改變離子束能量、氮氣含量比與基板溫度作為獲得C軸指向與表面平整的氮化鋁薄膜之參數條件。
本實驗成功利用雙離子束濺鍍法成長C軸氮化鋁薄膜。使用鋁靶作濺鍍來源時,在固定工作壓力為4X10 –4 torr且基板未加熱情況下,將離子束電壓控制在700ev,氮氣濃度與氬氣濃度比為5:4,可得到一高平整性的氮化鋁薄膜﹔若薄膜中含有相當成份的氧化鋁,會大大影響氮化鋁的成長。由於氧化鋁的成長速率較氮化鋁快,因此基板的加熱會導致氧化鋁抑制氮化鋁的成長,使得氮化鋁之C軸取向的結晶性變差。
本實驗在薄膜成長後利用X-Ray繞射儀(XRD)、掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)、二次離子質譜儀(SIMS)以及化學分析電子質譜儀 (ESCA)分析薄膜成長結果。
Abstract
Aluminum nitride (AlN) thin film is a promising material as buffer layer in GaN-based optoelectronic and electronic devices or as a substrate to fabricate Surface Acoustic Wave (SAW) and Film Bulk Acoustic wave Resonant (FBAR) devices in high frequency in wireless (>1GHz) communication technology. Aluminum nitride, thin film with the c-axis normal to the film is favored in a low energy deposition condition because it places the packed hexagonal basal plane parallel to the substrate surface. Grains of this orientation have a low surface energy which favors rapid growth in a columnar structure.

In this experiment r.f. dual ion beam sputtering (DIBS) system is used to prepare the AlN films on Si (100) substrate. Various processing variable were tested to deposit AlN films with desirable properties. After systematic testing, a high quality film with preferred c-axis orientation was grown successfully on Si (100) substrate with Al target under the process parameters of 700 ev energy flux; 55% N2 / (N2+Ar) ratio; 4X10 - 4 torr working pressure with no heating of substrate. The AlN target is also used. The results show the great sensitivity of the films to oxygen-containing environments. Only under low residual oxygen pressure, could aluminum nitride be grown well.

The deposited AlN thin film characteristic were studied by X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscopy (TEM), Secondary Ion Mass Spectrometry (SIMS) and Electron Spectroscopy for Chemical Analysis (ESCA).
目次 Table of Contents
Contents

中文摘要 I

Abstract II

Contents III

Table caption V

Figure caption VI

Chapter 1 Introduction 1

Chapter 2 Theoretical background 3
2.1 The structure and properties of aluminum nitride 3
2.2 Deposition of thin films 4
2.3 Sputtering 5
2.3.1 Plasma and sputtering 5
2.3.2 Ion beam sputtering 7
2.3.3 Dual ion beam sputtering 9
2.4 Reference research 9

Chapter 3 Experiments 12
3.1 Substrate cleaning process 12
3.2 AlN thin film deposition 12
3.3 Characteristic methods of thin films 13
3.3.1 X-Ray diffraction 13
3.3.2 Field emission scanning electron microscopy 13
3.3.3 Transmission electron microscopy 13
3.3.4 Secondary ion mass spectrometry 14
3.3.5 Electron spectroscopy for chemical analysis 14

Chapter 4 Results and Discussion 15
4.1 Sputtering parameters for AlN films deposition 15

Experiments I 17
4.2 The effects of growth parameters on crystal structure 17
4.2.1 Effect of energy flux 17
4.2.2 Effect of substrate temperature 18
4.2.3 Effect of nitrogen concentration 19
4.3 The effects of growth parameters on microstructure by SEM 19
4.3.1 Plane-view 19
4.3.2 The effects of growth parameters on thickness 20
4.4 SIMS analysis 20
4.5 ESCA 21
4.6 TEM analysis 22

Experiments II 24
4.7 The effects of growth parameters on crystal structure 24
4.7.1 Effect of substrate temperature 24
4.7.2 Effect of energy flux 25
4.7.3 Effect of beam current 25
4.8 The effects of growth parameters on microstructure by SEM 25
4.9 TEM analysis 25

Chapter 4 Conclusions 27

References 28
Table caption

Table 2.1 The properties of aluminum nitride 33
Table 2.2 The materials of thin films commonly used in SAW devices 33
Table 2.3 The relationship between the AlN and different coating of substrates 34
Table 2.4 The visual appearance of the films changes with the variation of the composition and its microstructure 34
Table 2.5 The optical constants of AlN prepared by different deposition systems 35

Table 3.1 The sputtering conditions for preparing AlN films 36
Table 3.2 JCPDS dates of AlN with hexagonal structure 37
Table 3.3 JCPDs data of Al 37
Table 3.4 JCPDs data of Al2O3 38

Table 4.1 The relative to other references for effects of growth parameters 39
Table 4.2 The deposition parameter using Al target of experiments I 40
Table 4.3 The deposition parameter using AlN target of experiments I 41
Table 4.4 The deposition parameter using AlN target of experiments II 41

Figure caption

Fig. 2.1 The crystal structure of AlN: (a) the structure of distorted tetrahedron, (b) unit cell, (c) hexagonal wurtzite structure 42
Fig. 2.2 The stage of structure evolution in polycrystalline thin films: (a) nucleation, (b) grain growth, (c) coalescence, (d) filling of channels and (e) film growth 43
Fig. 2.3 The schematic diagram of free energy change and mean radius 43
Fig. 2.4 The layer growth the deposit wets the substrate 44
Fig. 2.5 Coalescence of islands due to (a) Ostwald ripening, (b) sintering, (c) cluster migration 44
Fig. 2.6 The voltage distribution and discharge characteristic across dc glow discharge 45
Fig. 2.7 The typical glow discharge appearance 45
Fig. 2.8 A schematic diagram of gridded, broad-beam ion source and its controller 46
Fig. 2.9 A broad beam ion source with power supplies 46
Fig. 2.10 The principle of plasma bridge neutralizer 47
Fig. 2.11 The relationship between the sputtering yield and incident beam 47
Fig. 2.12 The relationship between ion current densities and two grids 48
Fig. 2.13 The illustration of the aperture of two grids 48
Fig. 2.14 A schematic diagram of the End-Hall ion source 49

Fig. 3.1 The dual ion beam sputtering deposition system 50
Fig. 3.2 The flow chart of deposition process 50
Fig. 3.3 Experiments process of AlN films 51
Fig. 3.4 The principle of secondary ion mass spectrometry 52
Fig. 3.5 The principle of electron spectroscopy 53

Fig. 4.1 The XRD patterns of AlN films synthesized at various energy fluxes using Al target 54
Fig. 4.2 The XRD patterns of AlN films synthesized at various energy fluxes using AlN target 55
Fig. 4.3 The XRD patterns of AlN films synthesized at R.T and Tsub=300℃ using Al target 56
Fig. 4.4 The XRD patterns of AlN films synthesized at R.T and Tsub=300℃ using AlN target 57
Fig. 4.5 The XRD patterns of AlN films synthesized at various N2 % and R.T using Al target 58
Fig. 4.6 The XRD patterns of AlN films synthesized at various N2 % and Tsub=300℃ using Al target 59
Fig. 4.7 SEM micrograph of AlN films prepared at 55% N2, 700 ev and R.T using Al target 60
Fig. 4.8 SEM micrograph of AlN films prepared at 55% N2, 700 ev and Tsub=300℃ using Al target 60
Fig. 4.9 SEM micrograph of AlN films prepared at 700 ev and R.T using AlN target 61
Fig. 4.10 SEM micrograph of AlN films prepared at 700 ev and Tsub=300℃ using AlN target 61
Fig. 4.11 The relationship between deposition rate and energy flux at time=180 min 62
Fig. 4.12 The relationship between deposition rate and N2 % at time=180 min 62
Fig. 4.13 SIMS depth profile of AlN films formed at 55% N2, 700 ev and R.T using Al target 63
Fig. 4.14 SIMS depth profile of AlN films formed at 55% N2, 700 ev and Tsub=300℃ using Al target 63
Fig. 4.15 SIMS depth profile of AlN films formed at 700 ev and R.T using AlN target 64
Fig. 4.16 SIMS depth profile of AlN films formed at 700 ev and Tsub=300℃ using AlN target 64
Fig. 4.17 A typical ESCA spectrum of AlN films on Si (100) at R.T and Tsub=300℃ using Al target 65
Fig. 4.18a The binding energy of Al 2p AlN films formed at 55% N2, 700 ev and R.T using Al target 66
Fig. 4.18b The binding energy of N 1s AlN films formed at 55% N2, 700 ev and R.T using Al target 66
Fig. 4.19a The binding energy of Al 2p AlN films formed at 55% N2, 700 ev and Tsub=300℃ using Al target 67
Fig. 4.19b The binding energy of N 1s AlN films formed at 55% N2, 700 ev and Tsub=300℃ using Al target 67
Fig. 4.20 TEM micrograph of AlN films synthesized at 55% N2, 700 ev and R.T using Al target 68
Fig. 4.21 Cross-sectional TEM photograph of AlN films synthesized at 55% N2, 700 ev and R.T using Al target 71
Fig. 4.22 TEM micrograph of AlN films synthesized at 55% N2, 700 ev and Tsub=300℃ using Al target 75
Fig. 4.23 TEM micrograph of AlN films synthesized at 700 ev and R.T using AlN target 77
Fig. 4.24 The XRD patterns of AlN films synthesized at R.T and T=300℃as deposited Al layer using AlN target 79
Fig. 4.25 The XRD patterns of AlN films synthesized at various substrate temperatures using AlN target 80
Fig. 4.26 The XRD patterns of AlN films synthesized at various energy fluxes using AlN target 81
Fig. 4.27 The XRD patterns of AlN films synthesized at various beam current using AlN target 82
Fig. 4.28 SEM micrograph of AlN films prepared at 650 ev and R.T using AlN target 83
Fig. 4.29 SEM micrograph of AlN films prepared at 650 ev and Tsub=300℃ using AlN target 83
Fig. 4.30 SEM micrograph of AlN films prepared at 650 ev and Tsub=453℃ using AlN target 84
Fig. 4.31 TEM micrograph of AlN films synthesized at 650 ev and Tsub=453℃ using AlN target 85

Fig. 5.1 A schematic diagrams showing formation mechanism of the AlN films 87
參考文獻 References
【1】 C. Caliendo, G. Saggio, P. Verardi and E. Verona, “Piezoelectric AlN film for SAW devices applications”, IEEE, Vol. 1 (1993) pp. 249-252
【2】 V. Dumitru, E. Cimpoiasu, C. Morosanu, C. Nenu, D. Necsoiu, “Aluminum nitride films for optical applications”, IEEE, Vol. 2 (1996) pp. 641-644
【3】 N. D. Kerness, T. Z. Hossain, S. C. McGuire, “Impurity study of alumina and aluminum nitride ceramics-microelectronics packaging applications”, Appl. Radiat. Isot., Vol. 48 No. 1 (1997) pp. 5-9
【4】 J. M. E. Harper, J. J. Cuomo, and H. T. G. Hentzell, “Synthesis of compound thin films by dual ion beam deposition: I. Experimental approach”, J.Appl. Phys., Vol. 58 (1985) pp. 550-555
【5】 Kato Shuji, Yamada Yoichi Taguchi, Tsunemasa, “Structural properties and intense ultraviolet emission of polycrystalline GaN films on AlN ceramics grown by N plasma-excited CVD”, Journal of Crystal Growth, Vol. 189/190 (1998) pp. 223-226
【6】 Sun Jian, Wu Jiada, Ling Hao, Shi Wei, Ying Zhifeng, Li Fuming, “Photoluminescence and its time evolution of AlN thin films”, Phys. Letts A, Vol. 280 issue 5-6 (2001) pp. 381-385
【7】 K. Uehara, H. Nakamura, H. Nakase, K. Tsubouchi, “AlN epitaxial film with atomically flat surface for GHz-band SAW devices”, IEEE, Vol. 1 (2002) pp. 135-138
【8】 F. Nakamura, S. Hashimoto, M. Hara, S. Imanaga, M. Ikeda, H. Kawai, “AlN and AlGaN growth using pressure metalorganic chemical vapor deposition”, Journal of Crystal Growth, Vol. 195 (1998) pp. 280-285
【9】 T. Ogawa, M. Okamoto, Y. Mori, T. Sasaki, “Aluminum nitride thin films grown by plasma-assisted pulsed laser deposition”, Appl. Surf. Sci., Vol. 113-114 (1997) pp.57-60
【10】L.L. Cheng, Y.H. Yu, B. Sundaravel, E.Z. Luo, S. Lin, Y.M. Lei, “Compositional and morphological study of reactive ion beam deposited AlN thin films”, Nucl. Instr. and Meth. B, Vol. 169 (2000) pp. 94-97
【11】Jie Yang, Chen Wang, Xinshui Yan, Kun Tao, Baixin Liu and Yudian Fan, “Polycrystalline AIN films of fine crystallinity prepared by ion beam assisted deposition”, Appl. Phys. Lett., Vol. 62 (1993) pp. 2790-2791
【12】R. P. Netterfield, K.-H. Müller; D. R. McKenzie; M. J. Goonan; P. J. Martin, “Growth dynamics of aluminum nitride and aluminum oxide thin films synthesized by ion-assisted deposition”, J.Appl. Phys., Vol. 63 (1988) pp. 760-769
【13】B. Aspar, R. Rodriguez Clemente, A. Figueras, B. Armas and C. Combescure, “Influence of the experimental conditions on the morphology of CVD AlN films”, Journal of Crystal Growth, Vol. 129 (1993) pp. 56-66
【14】Lee W. J., Soh J. W., Jang S. S., Jeong I. S., “C-axis orientation of AlN films prepared by ECR PECVD”, Thin Solid Films, Vol. 279 (1996) pp. 17-22
【15】W. J. Meng, J. A. Sell, T. A. Perry, L. E. Rehn, and P. M. Baldo, “Growth of aluminum nitride thin films on Si(111) and Si(001): Structural characteristics and development of intrinsic stresses”, J.Appl. Phys., Vol. 75 (1994) pp. 3446-3455
【16】Ronnen A. Roy, Dennis S. Yee and Jerome J. Cuomo, “Control of metal film properties by ion assisted deposition”, Mat. Res. Soc. Symp. Proc., Vol. 128 (1989) pp. 23-28
【17】J. M. E. Harper, J. J. Cuomo, and H. T. G. Hentzell, “Quantitative ion beam process for the deposition of compound thin films”, Appl. Phys. Lett., Vol. 43 (1983) pp. 547-549
【18】C. T. M. Ribeiro and F. Alvarez; A. R. Zanatta, “Structural properties of aluminum–nitrogen films prepared at low temperature”, Appl. Phys. Lett., Vol. 81 (2002) pp. 1005-1007
【19】James H. Edgar and W. J. Meng, Properties of group III nitrides, London: INSPEC, Institution of Electrical Engineers, 1994
【20】H. Amano, N. Sawaki, and I. Akasaki, Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer”, Appl. Phys. Lett., Vol. 48 No. 5 (1986) pp. 353-355
【21】L. J. Schowalter, J. C. Rojo., G. A. Slack, Y. Shusterman, R. Wang, I. Bhat, G. Arunmozhi, “Epitaxial growth of AlN and Al0.5Ga0.5N layers on aluminum nitride substrates”, Journal of Crystal Growth, Vol. 211 (2000) pp. 78-81
【22】Caliendo C., Saggio G., Verardi P. and Verona E., “Piezoelectric AlN film for SAW devices applications”, IEEE, Vol. 1 (1993) pp. 249-252
【23】Hiroshi Okano, Yusuke Takahashi, Toshiharu Tanaka, Kenichi Shibata and Shoichi Nakano, “Preparation of c-axis oriented AlN thin films by low-temperature reactive sputtering”, Jpn. J. Appl. Phys. Vol. 31 (1992) pp. 3446-3451
【24】L. Eckertova and T. Ruzicka, Diagnostics and Applications of Thin Films, Bristol, UK; Philadelphia: Institute of Physics Pub., 1992
【25】David A. Glocker, S. Ismat Shah, Handbook of Thin Film Process Technology, Bristol, UK; Philadelphia: Institute of Physics Pub., 1995
【26】 F. Shinoki and A. Itoh, “Mechanism of rf reactive sputtering”, J. Appl. Phys., Vol. 46 No. 8 (1975) pp. 3381-3384
【27】Milton Ohring, The Materials Science of Thin Films, Academic Press, 1992
【28】John L. Vossen, Werner Kern, Thin Film Process, Boston: Academic Press, 1991
【29】Brian Chapman, Glow Discharge Process, New York : Wiley, 1980
【30】李正中等, 真空技術與應用, 行政院國家科學委員會精密儀器發展中心 2000.
【31】C. Weissmantel, “Ion beam deposition of special film structures”, J. Vac. Sci. Technol., Vol. 18 (1981) pp. 179-185
【32】Jerome J. Cuomo and Stephen M. Rossnagel, Harold R. Kaufman, Handbook of Ion Beam Processing Technology, Park Ridge, N.J., U.S.A.: Noyes Publications, 1989
【33】D. Manova, P. Huber, S. Sienz, J. W. Gerlach, S. Mandl, and B. Rauschenbach, “Dependence of ion beam induced nitrogen diffusion in aluminum on oxygen impurities”, J. Vac. Sci. Technol. A, Vol. 20 (2002) pp. 206-213
【34】X. Wang, A. Kolitsch, F. Prokert and W. Möller, “Ion beam assisted deposition of AlN monolithic films and Al/AlN multilayers-a comparative study”, Surf. Coat. Technol., Vol. 103/104 (1998) pp. 334-339
【35】Kaufman H. R., R. S. Robinson, Operation of Broad-Beam Sources, Commonwealth Scientific Corporation, 1987
【36】H. Fetz. Z., phys. Vol. 119 (1942) pp.590
【37】E. John Mahan, Physical Vapor Deposition of Thin Films, John Wiley & Sons, Inc. 2000
【38】H. R. Kaufman, R. S. Robinson and R. L. Seddon, “End-Hall ion source”, J. Vac. Sci. Technol. A, Vol. 5 No. 4 (1987) pp. 2081-2084
【39】Won Taeg Lim, Byoung Keun Son, Dong Hae Kang, Chang Hyo Lee, “Structural properties of AlN films grown on Si, Ru on Si and ZnO on Si substrates”, Thin Solid Films, Vol. 382 (2002) pp. 56-60
【40】R. Evans, A. Salifu, G. Zhang, E. Evans, S.I. Hariharan, G.W Young, “Development of experimental techniques and an analytical model for aluminum nitriding”, Surf. Coat. Technol., Vol. 157 (2002) pp. 59-65
【41】J. M. E. Harper, J. J. Cuomo, and H. T. G. Hentzell, “Synthesis of compound thin films by dual ion beam deposition: II. Properties of aluminum nitrogen films”, J. Appl. Phys., Vol. 58 (1985) pp. 556-563
【42】Takikawa Hirofumi, Kawakami Naoya, Sakakibara Tateki, “Synthesis of a-axis oriented AlN film by a shielded reactive vacuum arc deposition method”, Surf. Coat. Technol. Vol. 120-121 (1999) pp. 383-387
【43】H. Y. Joo, H. J. Kim, S. J. Kim, S. Y. Kim, “The optical and structural properties of AlN thin films characterized by spectroscopic ellipsometry”, Thin Solid Films, Vol. 368 (2000) pp. 67-73
【44】Drusedau Tilo P., Blasing Jurgen, “Optical and structural properties of highly c-axis oriented aluminum nitride prepared by sputter-deposition in pure nitrogen”, Thin Solid Films, Vol. 377-378 (2000) pp. 27-31
【45】T. L. Chu, and R. W. Kelm, J. Electrochem. Soc., Vol. 122 (1975) pp. 995
【46】J. Bauer, L. Biste, and D. Bolze, Phys. Status Solidi, Vol.39 (1973) pp. 173-81
【47】A. Cachard, R. Fillit, I. Kadad, and J. C. Pommier, Vacuum, Vol. 41 (1990) pp. 1151
【48】H.Y. Joo and H. J. Kim, “Spectrophotometric analysis of aluminum nitride thin films”, J. Vac. Sci. Technol. A Vol. 17 No. 3 (1999) pp. 862
【49】H. Windischmann, Thin Solid Films, Vol. 154 (1987) pp. 159
【50】A. Benninghoven, F.G. Rudenauer, H.W. Werner, Secondary ion mass spectrometry: basic concepts, instrumental aspects, applications and trends, New York: J. Wiley, 1987
【51】C. J. Allan and K. Siegbahn, Electron Spectroscopy for Chemical Application, Uppsala, Uppsala University, Institute of Physics, 1971
【52】Y. N. Zhao, B. Wang, Z. He, “The effects of deposition parameters on the crystallographic orientation of AlN films prepared by RF reactive sputtering”, Vacuum, Vol. 48 No. 5 (1997) pp. 427-429
【53】Kikuo Tominaga, Hiroshi Imai and Masaki Shirai, “AlN sputtered film properties prepared at low gas pressures by facing target system”, Jpn. J. Appl. Phys., Vol. 30 (1991) pp. 2574-2580
【54】Lee Hwan Chul, Kim Guen Hong, Hong Soon Ku, Lee Ki Young, Yong Yoon Joong, Chun Chang Hwan, Lee Jai Young, “Influence of sputtering pressure on the microstructure evolution of AlN thin films prepared by reactive sputtering”, Thin Solid Films, Vol. 261 (1995) pp. 148-153
【55】S. Uchiyama, Y. Ishigami, M. Ohta, M. Niigaki, H. Kan, Y. Nakanishi, T. Yamaguchi, “Growth of AlN films by magnetron sputtering” Journal of Crystal Growth, Vol. 189/190 (1998) pp. 448-451
【56】M. Penza, M. F. De Riccardis, L. Mirenghi, M. A. Tagliente, E. Verona, “Low temperature growth of r.f reactively planar magnetron sputtered AlN films”, Thin Solid Films, Vol. 259 (1995) pp. 154-162
【57】Callus. P.J., Berndt. C.C., “Relationships between the mode II fracture toughness and microstructure of thermal spray coatings”, Surf. Coat. Technol., Vol. 114 (1999) pp. 269-277
【58】Y. Nakamura, Y. Watanabe, S. Hirayama, Y. Naota, “Synthesis of aluminium nitride thin films by ion-vapour deposition method” Surf. Coat. Technol., Vol. 68/69 (1994) pp. 203-207
【59】A. Nylund, I. Olefjord, Surf. Interface Anal. Vol. 21 (1994) pp.283
【60】M. W. Chase, C. A. Davies, J. R. Wowney, D. J. Frurip, R. A. MacDonald, A. N. Syverud, J. Phys. Chem. Ref. Data Vol. 14 (1986) pp. 156
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.222.67.251
論文開放下載的時間是 校外不公開

Your IP address is 18.222.67.251
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code