Responsive image
博碩士論文 etd-0715105-105304 詳細資訊
Title page for etd-0715105-105304
論文名稱
Title
以金屬化熱處理改進有機金屬化學氣相沈積二氧化鈦薄膜之電性
Improvement of Electrical Characteristics of MOCVD-TiO2 Films by Postmetallization Annealing
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
106
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-06-23
繳交日期
Date of Submission
2005-07-15
關鍵字
Keywords
有機金屬化學氣相沈積、二氧化鈦、金屬化熱處理
MOCVD, PMA, TiO2
統計
Statistics
本論文已被瀏覽 5675 次,被下載 1508
The thesis/dissertation has been browsed 5675 times, has been downloaded 1508 times.
中文摘要
動態記憶體尺寸的縮減在一開始即為一持續的趨勢。傳統二氧化矽用在閘極氧化層上將達至物理極限,因此採用高介電係數材料已是刻不容緩的事。而二氧化鈦由於具有高介電常數、高折射率、高化學穩定性,故適合應用在動態記憶體中金氧半場效電晶體之閘極介電材料。
我們採用水平、低壓、冷壁式之有機金屬化學氣相沈積法來成長二氧化鈦薄膜,採用的原料為四異丙烷氧化鈦,並以笑氣作為氧化氣體。成長溫度從400℃到650℃。利用有機金屬化學氣相沈積在矽基板上生長二氧化鈦薄膜具有高的介電常數,但由於二氧化鈦薄膜是多晶結構,除本身缺陷外,其晶界具有很多缺陷及懸鍵,故其漏電流也非常大。成長溫度明顯地影響二氧化鈦薄膜的電性,在經由氧回火處理後漏電流也有顯著的改善。然而,在氧回火後經金屬化熱處理,可以再更進一步地改善電性。
金屬化熱處理是一種利用氧化層表面的氫氧根(OH-)和披覆金屬層(Al)反應而產生活性氫原子,此活性氫原子可擴散進入到氧化膜裡,進而鈍化氧化膜裡的缺陷及懸鍵,可用來降低金氧半(MOS)結構的氧化層電荷密度及介面能態密度。因此,將金屬化熱處理這種技術運用在有機金屬化學氣相沈積成長二氧化鈦薄膜的金氧半電容上,將可鈍化其氧化膜裡的缺陷及懸鍵,進而可在維持高介電常數的條件下降低漏電流。其漏電流在-5 MV/cm下可達至3.44×10^-6 A/cm^2,遲滯偏移電壓為5 mV,介面狀態密度可達至1.17 × 10^11 cm^−2 eV^−1。
Abstract
Scaling down of DRAM’s dimensions is a continuous trend since its inception. Therefore, the high dielectric constant material is necessary because the application of conventional SiO2 will reach its physical limits. Due to TiO2 have high dielectric constant (ε// = 170, ε⊥ = 90), high refractive index (~2.5) and high chemical stability, it is a promising candidate for fabricating thin dielectrics in DRAM storage capacitors and as gate dielectrics of MOSFET without the problem of conventional SiO2 thickness scaling down in ULSI processes.
TiO2 thin films grown on p-type (100) Si substrate are investigated by a cold wall horizontal MOCVD system using Ti(i-OC3H7)4, N2O as precursors at the growth temperature which ranges from 400 oC to 650 oC. The dielectric constant of poly-crystalline titanium oxide (TiO2) films grown on silicon (Si) by metal organic chemical vapor deposition (MOCVD) is high. The leakage current is also high, which is dominated by the film defect and the grain boundary. The electrical characteristics are also strongly associated with growth temperature. After oxygen annealing, the leakage current is improved due to the reduction of the oxygen vacancy of TiO2 film. However, the electrical characteristics can be further improved by the postmetallization annealing treatment especially under the negative electric field.
Post-metallization annealing (PMA) is an effective method in MOS technology to reduce the effective charge density and the interface state density. The mechanism of PMA is to use the reaction between the aluminum contact and hydroxyl groups existed on oxide surface to form active hydrogen and diffuse through the oxide to passivate the oxide traps. Therefore, MOCVD-TiO2/Si films which treated by O2-annealing and PMA with high dielectric constant and low leakage current can be obtained. The leakage current can reach 3.44×10^-6 A/cm2 under a negative electric field of 5 MV/cm. The hysteresis loop shift voltage and the interface state densities are 5 mV and 1.17 × 10^11 cm−2 eV^−1, respectively.
目次 Table of Contents
Acknowledgment.....................................I
Contents...........................................V
List of Figures....................................VII
List of Tables.....................................IX
Abstract...........................................X

CHAPTER 1..........................................1
Introduction.......................................1
1-1 Developments in DRAM.........................1
1-2 Properties of TiO2...........................2
1-3 Comparison of deposition method of TiO2......3
1-4 Advantages of MOCVD..........................4
1-5 Our Previous study of MOCVD-TiO2 films.......4
1-5.1 Thickness of TiO2 films as a function of growth temperature........................................5
1-5.2 XRD spectra of TiO2 films as a function of growth temperature........................................6
1-5.3 SEM morphologies of TiO2 films as a function of growth temperature.................................6
1-5.4 ESCA stoichiometries of TiO2 films as a function of growth temperature..............................7
1-5.5 Electrical characteristics of TiO2 films...8
1-5.5.1 Leakage of TiO2 films as a function of growth temperature........................................8
1-5.5.2 C-V characteristics of as-grown and O2-annealed TiO2 films.........................................9
1-6 Motivation of TiO2/Si with PMA treatment.....11
References.........................................30

CHAPTER 2..........................................40
Experiments........................................40
2-1 CVD theorem..................................40
2-2 Growth system of MOCVD.......................41
2-3 Properties of source materials...............42
2-3.1 Ti metalorganic precursor..................42
2-3.2 N2O decomposed.............................42
2-4 Experimental details.........................43
2-4.1 Si wafer cleaning procedures...............43
2-4.2 Aluminum metal cleaning processes..........44
2-4.3 Preparations of TiO2 thin films............44
2-4.4 PMA procedure..............................44
2-5 Characterization.............................45
2-5.1 Physical characteristics...................45
2-5.2 Chemical characteristics...................45
2-5.3 Electrical characteristics.................46
References.........................................58

CHAPTER 3..........................................59
Results and Discussion.............................59
3-1 Improvement of electrical characteristics of TiO2 films by PMA.......................................59
3-2 Leakage current density of O2-annealed TiO2 films as a function of PMA temperature......................60
3-3 Mechanisms of leakage current................62
3-3.1 Frenkel-Poole plots for as-grown TiO2 films...62
3-3.2 Space-charge limited plots for O2-ammealed TiO2 films..............................................62
3-3.3 Schottky emission plots of TiO2 films with PMA treatment..........................................63
3-4 Hydrogen depth profiles by SIMS..............63
3-5 C-V characteristics of O2-annealed TiO2 films as a function of PMA temperature........................64
3-6 The effect of PMA treatment on as-grown TiO2 films ..........................................66
References.........................................90

CHAPTER 4..........................................92
Conclusions........................................92

List of Figures
Figure 1-1~1-13...............................14~26
Figure 2-1~2-6 ...............................51~56
Figure 3-1~3-14...............................69~89

List of Tables
Table 1-1~1-3.................................27~29
參考文獻 References
[1-01] Yujun Li, Jai-Hoon Sim, Jack Mandelman, Kevin McStay, Qiuyi Ye, and Gary Bronner, “Array transistor design challenges in trench capacitor DRAM technology,” VLSI Technology, Systems and Applications, pp. 85-88, 2001.
[1-02] John J. Sullivan, Bin Han, “Metalorganic chemical vapor deposition of titanium oxide for microelectronics applications,” J. Mater. Res., vol. 16, No. 6, pp. 1838-1849, 2001.
[1-03] K. S. Tang, W. S. Lau, and G. S. Samudra, “Trends in DRAM dielectrics,” IEEE Circuits & Devices, vol. 13, pp. 27-34, 1997.
[1-04] S. Kamiyama, P. Y. Lesaicherre, H. Suzuki, A. Sakai, I. Nishiyama and A. Ishitani, “Ultrathin tantalum oxide capacitor dielectric layers fabricated using rapid thermal nitridation prior to low-pressure chemical-vapor-deposition,” J. Electrochem. Soc., vol. 140, pp. 1617-1625, 1993.
[1-05] Y. H. Lee, K. K. Chan, and M. J. Brady, “Plasma enhanced chemical vapor deposition of TiO2 in microwave-radio frequency hybrid plasma reactor,” J. Vac. Sci. & Technol., vol. 13, pp. 596-601, 1995.
[1-06] Y. Abe and T. Fukuda, “TiO2 thin films formed by electron cyclotron resonance plasma oxidation at high temperature and their application to capacitor dielectrics,” Jpn. J. Appl. Phys. Part 2-Letts, vol. 33, pp. L1248-L1250, 1994.
[1-07] T. W. Kim, Y. S. Toon, S. S. Yom, and C. O. Kim, “Ferroelectric BaTiO3 films with a high magnitude dielectric constant grown on p-Si by low-pressure metalorganic chemical vapor deposition,” Appl. Surface. Science, vol. 90, pp. 75-80, 1995.
[1-08] K. Koyama, T. Sakuma, S. Yamamichi, Watanabe, and H. Aoki, “A stacked capacitor with (BaxSr1-x)TiO3 for 256M DRAM,” IEDM Tech. Dig., pp. 823-826, 1991.
[1-09] E. Tokumitsu, Ryo-ichi Nakamura, and H. Ishiwara, “Nonvolatile memory operations of metal-ferroelectric-insulator-semiconductor (MFIS) FET’s using PLZT/STO/Si(100) structures,” IEEE Electron Device Lett., vol. 18, no. 4, pp. 160-162, 1997.
[1-10] Y. H. Lee, K. K. Chan, and M. J. Brady, “Plasma enhanced chemical vapor deposition of TiO2 in microwave-radio frequency hybrid plasma reactor,” J. Vac. Sci. & Technol., vol. 13, pp. 596-601, 1995.
[1-11] The Oxide Handbook, ed. G. V. Samsonov ( IFI/Plenum, New York), p. 316, 1973.
[1-12] J. Yan, D. C. Gilmer, S. A. Campbell. W. L. Gladfelter, and R. G. Schmid, “Structural and electrical characterization of TiO2 grown from titanium tetrakis-isopropoxide (ttip) and ttip/H2O ambients”, J. Vac. Sci. & Technol., vol. B14, pp. 1706-1711, 1996.
[1-13] M. A. Butler and D. S. Ginley, “Principles of photoelectrochemical solar-energy conversion,” J. Mater. Sci., vol. 15, pp 1-19, 1980.
[1-14] T. Carlson and G. L. Griffin, “Photooxidation of methanol using V2O5/TiO2 and MoO3/TiO2 surface oxide monolayer catalysts,” J. Phys. Chem. , vol. 90, pp.5896-5900, 1986.
[1-15] X. R. Wang, H. Masumoto, Y. Someno, and T. Hirai, “Optical characterization of SiO2-TiO2 thin-films with graded refractive-index profiles,” Journal of the JapanInstitute of Metals, vol. 62, pp. 1069-1074, 1998.
[1-16] X. R. Wang, H. Masumoto, Y. Someno, and T. Hirai, “Helicon plasma deposition of a TiO2/SiO2 multilayer optical filter with graded refractive-index profiles,” Appl. Phys. Lett., vol. 72, pp. 3264-3266, 1998.
[1-17] C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of SiO2 and TiO2 thin-films by PECVD for antireflection coating,” J. Non-Cryst. Solids, vol. 216, pp. 77-82, 1997.
[1-18] K. Hara, K. Sayama, Y. Ohga, A. Shinpo, S. Suga, and H. Arakawa, “A coumarin-derivative dye-sensitized nanocrystalline TiO2 solar-cell having a high solar-energy conversion efficiency up to 5.6-percent” Chemical Communications, pp. 569-570, 2001.
[1-19] A. Bahtat, M. Bouderbala, M. Bahtat, M. Bouazaoui, J. Mugnier, and M. Druetta, “Structural characterization of Er3+ doped sol-gel TiO2 planar optical wave-guides” Thin Solid Films, vol. 323, pp. 59-62, 1998.
[1-20] N. Goutev, Z. S. Nickolov, and J. J. Ramsden, “Wave-guide Raman-Spectroscopy of Si(Ti)O2 thin-films with grating coupling,” J. Raman Spectrosc., vol. 27, pp. 897-900, 1996.
[1-21] S. D. Mo and W. Y. Ching, “Electronic and optical-properties of three phases of titanium-dioxide - rutile, anatase, and brookite,” Physical Review B-Condensed Matter, vol. 51, pp. 13023-13032, 1995.
[1-22] D. J. Won, C. H. Wang, H. K. Jang, and D. J. Choi, “Effects of thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2 films on structural and optical properties,” Appl. Phys. A, vol. 73, pp. 595–600, 2001.
[1-23] A. L. Linsebigler, G. Q. Lu, and J. T. Yates, “Photocatalysis on TiO2 surfaces - principles, mechanisms, and selected results,” Chemical Reviews, vol. 95, pp. 735-758, 1995.
[1-24] H. Tang, K. Prasad, R. Sanjines, P. E. Schmid, and F. Levy, “Electrical and optical-properties of TiO2 anatase thin-films,” J. Appl. Physi., vol. 75, Iss 4, pp. 2042-2047, 1994.
[1-25] N. Daude, C. Goutm, and C. Jouanin, Phys. Rev. B 15, pp.3229, 1977.
[1-26] G. S. Brady and H. R. Clauser: Materials Handbook, 13th ed. (McGraw-Hill, New York 1991)
[1-27] G. K. Boschloo, A. Goossens, and J. Schoonman, “Investigation of the potential distribution in porous nanocrystalline TiO2 electrodes by electrolyte electroreflection,” Joural of Electroanalytical Chemistry, vol. 428, pp. 25-32, 1997.
[1-28] Masaru Kadoshima, Masahiko Hiratani, Yasuhiro Shimamoto, Kazuyoshi Torii, Hiroshi Miki, Shinichiro Kimura, and Toshihide Nabatame, “Rutile-type TiO2 thin film for high-k gate insulator,” Thin Solid Films, vol. 424, pp.224-228, 2003.
[1-29] National Institute of Standards and Technology, Phase Equilibrium Diagrams, ver.2.1, The American Ceramic Society, Westerville, 1998, Fig. 4258.
[1-30] J. M. Criado and C. Real, J. Soria, Solid State Ionics, vol. 32/33, p.461, 1989.
[1-31] R.D. Shannon and J.A. Pask, J. Am. Ceram. Soc. vol. 48, p. 391, 1965.
[1-32] R. S. Sonawane, S. G. Hegde, and M. K. Dongare, “Preparation of titanium(iv) oxide thin-film photocatalyst by sol-gel dip coating,” Mater. Chem. Phys., vol. 77, pp. 744-750, 2003.
[1-33] O. Harizanov and A. Harizanova, “Development and investigation of sol–gel solutions for the formation of TiO2 coatings,” Solar Energy Materials and Solar Cells, vol. 63, pp. 185-195, 2000.
[1-34] R. A. Zoppi , B. C. Trasferetti, and C. U. Davanzo, “Sol–gel titanium dioxide thin films on platinum substrates: preparation and characterization,” J. Electroanalytical Chemistry, vol. 544, pp.47-57, 2003.
[1-35] G. Sanvicente, A. Morales, and M. T. Gutierrez, “Preparation and characterization of sol–gel TiO2 antireflective coatings for silicon,” Thin Solid Films, vol. 391, pp. 133-137, 2001.
[1-36] C. Garzella, E. Comini, E. Tempesti, C. Frigeri, and G. Sberveglieri, “TiO2 thin films by a novel sol–gel processing for gas sensor applications,” Sensors and Actuators B-Chemical, vol. 68, pp. 189-196, 2000.
[1-37] S. C. Chiao, B. G. Bovard, and H. A. Macleod, “Repeatability of the composition of titanium oxide films produced by evaporation of Ti2O3,” Applied Optics-OT, vol. 37, pp.5284-5290, 1998.
[1-38] D. Mergela, D. Buschendorfa, S. Eggerta, R. Grammesb, and B. Samsetc, “Density and refractive index of TiO2 films prepared by reactive evaporation,” Thin Solid Films, vol. 371, pp.218-224, 2000.
[1-39] S. G. Springer, P. E. Schmid, R. Sanjines, and F. Levy, “Morphology and electrical properties of titanium oxide nanometric multilayers deposited by DC reactive sputtering,” Surface & Coatings Technology, vol. 151, pp. 51-54, 2002.
[1-40] P. Zeman and S. Takabayashi, “Effect of total and oxygen partial pressures on structure of photocatalytic TiO2 films sputtered on unheated substrate,” Surf. Coat. Technol., vol. 153, pp.93-99,2002
[1-41] T. M. Wang, S. K. Zheng, W. Hao, and C. Wang, “Studies on photocatalytic activity and transmittance spectra of TiO2 thin-films prepared by R.F. magnetron sputtering method,” Surf. Coat. Technol., vol. 155, pp. 141-145, 2002.
[1-42] C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of SiO2 and TiO2 thin films by plasma enhanced chemical vapor deposition for antireflection coating,” J. Non-Cryst. Solids, vol. 216, pp. 77-82, 1997.
[1-43] G. A. Battiston, R. Gerbasi, A. Gregori, M. Porchia, S. Cattarin, and G. A. Rizzi-GA, “PECVD of amorphous TiO2 thin films: effect of growth temperature and plasma gas composition,” Thin Solid Films, vol. 371, pp. 126-131, 2000.
[1-44] N. C. Dacruz, E. C. Rangel, J. J. Wang, B. C. Trasferetti, C. U. Davanzo, Castro-SGC, and Demoraes-MAB, “Properties of titanium-oxide films obtained by PECVD,” Surf. Coat. Technol., vol. 126, pp. 123-130, 2000.
[1-45] S. S. Huang and J. S. Chen, “Comparison of the characteristics of TiO2 films prepared by low-pressure and plasma-enhancedchemical-vapor-deposition,” J. Mater. Sci. -Materials in Electronics, vol. 13, pp. 77-81, 2002.
[1-46] S. Yamamoto, T. Sumita, Sugiharuto, A. Miyashita, and H. Naramoto, “Characterization of epitaxial TiO2 films prepared by pulsed laser deposition,”Thin Solid Films, vol. 401, pp. 88-93, 2001.
[1-47] D. G. Syarif, A. Miyashita, T. Yamaki, T. Sumita, Y. Choi, and H. Itoh, “Preparation of anatase and rutile thin-films by controlling oxygen partial-pressure,” Appl. Surf. Sci., vol. 193, pp. 287-292, 2002.
[1-48] R. Paily, A. Dasgupta, N. Dasgupta, P. Bhattacharya, P. Misra, T. Ganguli, L. M. Kukreja, A. K. Balamurugan, S. Rajagopalan, and A. K. Tyagi, “Pulsed-laser deposition of TiO2 for MOS gate dielectric,” Appl. Surf. Sci., vol. 187, pp. 297-304, 2002.
[1-49] C. K. Ong and S. J. Wang, “In-situ RHEED monitor of the growth of epitaxial anatase TiO2 thin-films,” Appl. Surf. Sci., vol. 185, pp. 47-51, 2001.
[1-50] W. Sugimura, T. Yamazaki, H. Shigetani, J. Tanaka, and T. Mitsuhashi, “Anatase-type TiO2 thin-films produced by lattice deformation,” Jpn. J. Appl. Phys. Part 1-Regular Papers Short Notes & Review Papers, vol. 36, pp. 7358-7359, 1997.
[1-51] M. K. Lee, J. J. Huang, C. M. Shih, and C. C. Cheng, “Properties of TiO2 thin-films on InP substrate prepared by liquid-phase deposition,” Jpn. J. Appl. Phys. Part 1-Regular Papers Short Notes & Review Papers, vol. 41, pp. 4689-4690, 2002.
[1-52] M. K. Lee and B. H. Lei, “Characterization of titanium-oxide films prepared by liquid-phase deposition using hexafluorotitanic acid,” Jpn. J. Appl. Phys. Part 2-Letters, vol. 39, pp. L101-L103, 2000.
[1-53] X. P. Wang, Y. Yu, X. F. Hu, and L. Gao, “Hydrophilicity of TiO2 films prepared by liquid-phase deposition,” Thin Solid Films, vol. 371, pp. 148-152, 2000.
[1-54] P. Babelon, A. S. Dequiedt, H. Mostefasba, S. Bourgeois, P. Sibillot, and M. Sacilotti, “SEM and XPS studies of titanium-dioxide thin-films grown by MOCVD,” Thin Solid Films, vol. 322, pp. 63-67, 1998.
[1-55] S. C. Sun and T. F. Chen, “Effects of electrode materials and annealing ambients on the electrical-properties of TiO2 thin-films by metalorganic chemical-vapor-deposition,” Jpn. J. Appl. Phys. Part 1-Regular Papers Short Notes & Review Papers, vol. 36, pp. 1346-1350, 1997.
[1-56] C. K. Jung, B. C. Kang, H. Y. Chae, Y. S. Kim, M. K. Seo, S. K. Kim, S. B. Lee, J. H. Boo, Y. J. Moon, and J. Y. Lee, “Growth of TiO2 thin-films on Si(100) and Si(111) substrates using single molecular precursor by high-vacuum MOCVD and comparison of growth-behavior and structural-properties,” J. Cryst. Growth, vol. 235, pp. 450-456, 2002.
[1-57] M. K. Lee, Y. M. Hung, and J. J. Huang, “Properties of TiO2 thin-films on InP substrate prepared by MOCVD,” Jpn. J. Appl. Phys. Part 1-Regular Papers Short Notes & Review Papers, vol. 40, pp. 6543-6546, 2001.
[1-58] A. Tuan, M. Yoon, V. Medvedev, Y. Ono, Y. Ma, and J. W. Rogers, “Interface control in the chemical-vapor-deposition of titanium-dioxide on silicon(100),” Thin Solid Films, vol. 377, pp. 766-771, 2000.
[1-59] B. C. Kang, S. B. Lee, and J. H. Boo, “Growth of TiO2 thin-films on Si(100) substrates using single molecular precursors by metal-organic chemical-vapor-deposition,” Surf. Coat. Technol., vol. 131, pp. 88-92, 2000.
[1-60] D. H. Lee, Y. S. Cho, W. I. Yi, T. S. Kim, J. K. Lee, and H. J. Jung, “Metalorganic chemical-vapor-deposition of TiO2-N anatase thin-film on Si substrate”, Appl. Phys. Lett., vol. 66, pp. 815-821, 1995.
[1-61] A. Turkovic, M. Ivanda, A. Drasner, V. Vranesa and M. Persin, “Raman-spectroscopy of thermally annealed TiO2 thin films”, Thin Solid Films, vol. 198, pp. 199-205, 1991.
[1-62] H. S. Kim, D. C. Gilmer, S. A. Campbell, and D. L. Polla, “Leakage current and electrical breakdown in metal-organic chemical-vapor-deposited TiO2 dielectrics on silicon substrates”, Appl. Phys. Lett., vol. 69, pp 3860-3862, 1996.
[1-63] S. A. Campbell, D. C. Gilmer, X. C. Wang, M. T. Hsieh, H. S. Kim, W. L. Gladfelter, and J. H. Yan, “MOSFET transistors fabricated with high permitivity TiO2 dielectrics”, IEEE Tran. Electron Devices, vol. 44, pp. 104-109, 1997.
[1-64] G. Stringfellow, “Organometallic vapor phase epitaxy: Theory and Practice, Academic Press, Boston, 1989.
[1-65] M. K. Lee, J. J. Huang, and T. S. Wu, “Electrical characteristics improvement of oxygen-annealed MOCVD-TiO2 films,” Semicond. Sci. Technol., vol. 20, pp. 519-523, 2005.
[1-66] B. C. Kang, S. B. Lee, and J. H. Boo, “Growth of TiO2 thin-films on Si(100) substrates using single molecular precursors by metal-organic chemical-vapor-deposition,” Surf. Coat. Technol., vol. 131, pp. 88-92, 2000.
[1-67] A. C. Jones, T. J. Leedham, P. J. Wright, M. J. Crosbie, K. A. Fleeting, D. J. Otway, P. O. Brien, and M. E. Pemble, “Synthesis and characterisation of two novel titanium isopropoxides stabilised with a chelating alkoxide: their use in the liquid injection MOCVD of titanium dioxide thin films,” J. Mater. Chem., vol. 8, pp. 1773-1777, 1998.
[1-68] D. J. Won, C. H. Wang, H. K. Jang, and D. J. Choi, “Effects of thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2 films on structural and optical properties,” Appl. Phys. A, vol. 73, pp. 595-600, 2001.
[1-69] A. L. Linsebigler, G. Q. Lu, and J. T. Yates, “Photocatalysis on TiO2 surfaces - principles, mechanisms, and selected results,” Chemical Reviews, vol. 95, pp. 735-758, 1995.
[1-70] “Powder Diffraction File,” Joint committee on powder diffraction standards.
[1-71] D. H. Lee, Y. S. Cho, W. I. Yi, T. S. Kim, J. K. Lee, and H. J. Jung, “Metalorganic chemical-vapor-deposition of TiO2-N anatase thin-film on Si substrate,” Appl. Phys. Lett. , vol. 66, pp. 815-821, 1995.
[1-72] K. A. Eliis and R. A. Bunhrman, “Nitrous oxide (N2O) processing for silicon oxynitride gate dielectrics,” IBM J. RES. DEVELOP., vol. 43, pp. 287-300, 1999.
[1-73] M. Hiratani, M. Kadoshima, T. Hirano, Y. Shimamoto, Y. Matsui, T. Nabatame, K. Torii, and S. Kimura, “Ultra-thin titanium oxide film with a rutile-type structure,” Appl. Surf. Sci., vol. 207, pp.13-19, 2003.
[1-74] Y. Igasaki and H. Mitsuhashi, “Origin of negative temperature coefficient of resistivity in polycrystalline Ti-N films,” J. Appl. Phys., vol. 54, pp. 836-840, 1983.
[1-75] A. G. Baboul and H. B. Schlegel, “Structures and Energetics of Some Potential Intermediates in Titanium Nitride Chemical Vapor Desposition : TiClm(NH2)n, TiClm(NH2)nNH, and TiClm(NH2)nN. An ab Initio Molecular Orbital Study,” J. Phys. Chem. B, vol. 102, pp. 5152-5157, 1998.
[1-76] S. F. Chen and C. W. Wang, “Effect of deposition temperature on the conduction mechanisms and reliability of radio frequency sputtered TiO2 thin films,” J. Vac. Sci. Technol. B, vol. 20, pp. 263-270, 2002.
[1-77] J. Shin, S. Jeon, and H. Hwang, “Electrical Characteristics of High-K Metal Oxide/SiO2 Stack Gate Dielectric prepared by Reaction of Metal with SiO2,” J. Electrochemical Soc., vol. 149, pp. F1-F3, 2002.
[1-78] B. C. Kang, S. B. Lee, and J. H. Boo, “Growth of TiO2 thin films on Si (100) substrates using single molecular precursors by metal organic chemical vapor deposition,” Surf. Coat. Technol., vol. 131, pp. 88-92, 2000.
[1-79] M. H. Suhail, G. M. Rao, and S. Mohan, “dc reactive magnetron sputtering of titanium-structural and optical characterization of TiO2 films,” J. Appl. Phys., vol. 71, 1992.
[1-80] V. G. Erkov, S. F. Devyatova, E. L. Molodstova, T. V. Malsteva, and U. A. Yanovskil, “Si-TiO2 interface evolution at prolonged annealing in low vacuum or N2O ambient,” Appl. Surf. Sci., vol. 166, pp. 51-56, 2000.
[1-81] S. C. Li, and S. P. Murarka, “Electrical Characteristics and hydrogen concentration of chemical vapor deposited silicon dioxide films: Effect of water treatment,” J. Appl. Phys, vol. 72, pp. 4214-4219, 1992.
[1-82] E. G. Stein, F. Portheine, J. Stein, A. Golz, and H. Kurz, “Charge trapping in dry and wet oxides on N-type 6H-SiC studied Fowler-Nordheim charge injection,” J. Appl. Phys, vol. 79, pp. 2529-2534, 1996.
[1-83] L. M. Terman, “An Investigation of Surface States at a Silicon/Silicon Oxide Interface Employing Metal-Oxide-Silicon Diodes,” Solid-State Electronics., vol. 5, pp. 285-299, 1962.
[1-84] N. Rausch and E. P. Burte, Engineering, vol. 19, 725, 1992.
[1-85] W. D. Brown and W. W. Grannemann, “C-V Characteristics of Metal-Titanium Dioxide-Silicon Capacitors,” Solid-State Electron., vol. 21, pp. 837-846, 1978.
[1-86] D. M. Shang and W. Y. Ching, “Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite,” Phys. Rev. B, vol. 51, pp. 13023-13032, 1995.
[1-87] D. C. Gilmer, X. C. Wang, M. T. Hsieh, H. S. Kim, W. L. Glasfelter, and J. Yan, IEEE Trans. Electron Devices, vol. 44, pp. 104-109, 1997.
[1-88] W. Gopel and G. Rocker, “Intrinsic defects of TiO2(100): Interaction with chemisorbed O2, H2, and CO2,” Phys. Rev. B, vol. 28, pp.3427-3438, 1983.
[1-89] A. Rothschild and Y. Komem, “Electric and transport properties of reduced and oxidized nanocrystalline TiO2 films,” Appl. Phys. Lett., vol. 82, pp.574-576, 2003.
[1-90] P. Balk, in Proceedings of the Electrochemical Society Fall Meeting (Electrochemical Society, Buffalo, NY,1965), p.29.
[1-91] M. L. Reed and J. D. Plummer, “Chemistry of Si-SiO2 interface trap annealing”, J. Appl. Phys., 63, pp. 5776-5793, 1988.
[1-92] R. O. Lussow, “The Influence of Thermal SiO2 Surface Constitution on the Adherence of Photoresists”, 115, 660, 1968.
[1-93] http://www.gcsescience.com/a/r3.htm
[1-94] E. Cartier, J. H. Stathis, and D. A. Buchanan, “Passivation and depassivation of silicon dangling bounds at the Si/SiO2 interface by atomic hydrogen,” Appl. Phys. Lett., vol. 63, pp.1510-1512, 1993.
[1-95] E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology, Chap. 15, Wiley, New York (1982).
[1-96] E. K. Badih and J. B. Richard, Introduction to VLSI Silicon Device Physics, Technology and Characterization, pp. 340-341, Kluwer Academic Publishers (1986).
[1-97] L. Do Thanh and P. Balk, “Elimination and Generation of Si-SiO2 Interface Traps by Low Temperature Hydrogen Annealing”, J. Electrochem. Soc., 135, pp.1797-1801, 1988.
[1-98] R. R. Razouk and B. E. Deal, “Dependence of Interface State Density on Silicon Thermal Oxidation Process Variables,” J. Electrochem. Soc., vol. 126, pp. 1573-1581, 1979.
[2-01] James D. Plummer, Michael D. Deal, and Peter B. Griffin, Silicon VLSI Technology, p. 512, 2000
[2-02] Y. S. Yoon, W. N. Kang, H. S. Shin, S. S. Yom, T. W. Kim, J. Y. Lee, D. J. Choi, and S. S. Baek, “Structural properties of BaTiO3 thin films on Si grown by metalorganic chemical vapor deposition,” in J. Appl. Phys., vol. 73, no. 3, pp. 1547-1549, 1993.
[2-03] P. Babelon, A. S. Dequiedt, H. Mostefasba, S. Bourgeois, P. Sibillot, and M. Sacilotti, “SEM and XPS studies of titanium-dioxide thin-films grown by MOCVD,” Thin Solid Films, vol. 322, pp. 63-67, 1998.
[2-04] S. C. Sun and T. F. Chen, “Effects of electrode materials and annealing ambients on the electrical-properties of TiO2 thin-films by metalorganic chemical-vapor-deposition,” Jpn. J. Appl. Phys. Part 1-Regular Papers Short Notes & Review Papers, vol. 36, pp. 1346-1350, 1997.
[2-05] Z. J. Luo, Xin Guo, and T. P. Ma, “Temperature dependence of gate currents in thin Ta2O5 and TiO2films,” Appl. Phys. Lett., vol. 79, No. 17, pp. 2803-1849, 2001.
[2-06] W. S. Lau, P. W. Qian, N. P. Sandler, K. A. Mckinley, and P. K. Chu, “Evidence that N2O is a stronger oxidizing-agent than O2 for the postdeposition annealing of Ta2O5 on Si capacitors,” Jpn. J. Appl. Phys. Part 1-Regular Papers Short Notes & Review Papers, vol. 36, pp. 661-666, 1997.
[3-01] N. Rausch and E. P. Burte, Engineering, vol. 19, 725, 1992.
[3-02] W. D. Brown and W. W. Grannemann, “C-V Characteristics of Metal-Titanium Dioxide-Silicon Capacitors,” Solid-State Electron., vol. 21, pp. 837-846, 1978.
[3-03] O. O. Awadelkarim, S. J. Fonash, P. I. Mikulan, and Y. D. Chan, “Plasma-charging damage to gate SiO2 and SiO2/Si interfaces in submicron n-channel transistors: Latent defects and passivation/depassivation of defects by hydrogen,” J.Appl. Phys., vol. 79, pp.517-525, 1996.
[3-04] E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology, Chap. 15, Wiley, New York (1982).
[3-05] E. K. Badih and J. B. Richard, Introduction to VLSI Silicon Device Physics, Technology and Characterization, pp. 340-341, Kluwer Academic Publishers (1986).
[3-06] M. L. Reed and J. D. Plummer, “Chemistry of Si-SiO2 interface trap annealing”, J. Appl. Phys., 63, pp. 5776-5793, 1988.
[3-07] L. Do Thanh and P. Balk, “Elimination and Generation of Si-SiO2 Interface Traps by Low Temperature Hydrogen Annealing”, J. Electrochem. Soc., 135, pp.1797-1801, 1988
[3-08] P. Balk, in Proceedings of the Electrochemical Society Fall Meeting (Electrochemical Society, Buffalo, NY,1965), p.29.
[3-09] http://www.gcsescience.com/a/r3.htm
[3-10] R. O. Lussow, “The Influence of Thermal SiO2 Surface Constitution on the Adherence of Photoresists”, 115, 660, 1968.
[3-11] E. Cartier, J. H. Stathis, and D. A. Buchanan, “Passivation and depassivation of silicon dangling bounds at the Si/SiO2 interface by atomic hydrogen,” Appl. Phys. Lett., vol. 63, pp.1510-1512, 1993.
[3-12] R. R. Razouk and B. E. Deal, “Dependence of Interface State Density on Silicon Thermal Oxidation Process Variables,” J. Electrochem. Soc., vol. 126, pp. 1573-1581, 1979.
[3-13] H. S. Kim, S. A. Campbell, D. C. Gilmer, V. kaushik, J. Conner, L. Prabhu, and A. Anderson, “Determination of effects of deposition and anneal properties for tetranitratotitanium deposited TiO2 dielectrics,” J. Appli. Phys., Vol. 85, pp.3278-3281, 1999.
[3-14] S. M. Sze, “Physics of Semiconductor Devices second edition,” (Wiley, New York,) 1981, Chap. 7.
[3-15] C. K. Jung, D. C. Lim, H. G. Jee, M. G. Park, S. J. Ku, K. S. Yu, B. Hong, S. B. Leea, and J. H. Booa, “Hydrogenated amorphous and crystalline SiC thin films grown by RF-PECVD and thermal MOCVD; comparative study of structural and optical properties,” Surf. Coat. Technol., vol. 171, pp. 46-50, 2003.
[3-16] H. D. Fuchs, M. Stutzman, M. S. Brandt, M. Rosenbauer, J. Weber, A. Breitschwerd, P. Deak, and M. Cardona, “Porous silicon and siloxene: Vibrational and structural properties,” Phys. Rev. B, vol. 48, pp. 8172-8189, 1993.
[3-17] M.G. Hussein, K. Wörhoff, C.G.H. Roeloffzen, L.T.H. Hilderink, R.M. de Ridder and A. Driessen, “Characterization of thermally treated PECVD SiON layers,” Department of Electrical Engineering and Applied Physics, University of Twente.
[3-18] T. Sakurai and T. Sugano, “Theory of continuously distributed trap states at Si-SiO2 interfaces,” J. Appl. Phys., vol. 52, pp. 2889-2896,1981.
[3-19] C. F. Yeh and S. S. Lin, “Effects of plasma treatment on the properties of room-temperature liquid-phase deposited (LPD) oxide films,” J. Non-Cryst. Solids, vol. 187, pp. 81-85, 1995.
[3-20] L. M. Terman, “An Investigation of Surface States at a Silicon/Silicon Oxide Interface Employing Metal-Oxide-Silicon Diodes,” Solid-State Electronics., vol. 5, pp. 285-299, 1962.
[3-21] H. Fukuda, M. Yasuda, and T. Lwabuchi, “Process Dependence of the SiO2/Si(100) Interface Trap Density of Ultrathin SiO2 films,” J. Appl. Phys., vol. 72, pp. 1906-1911, 1992.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code