Responsive image
博碩士論文 etd-0715105-112701 詳細資訊
Title page for etd-0715105-112701
論文名稱
Title
以液相沉積法生長氧化鈦薄膜及應用
Deposition and Applications of Titanium Oxide by Liquid Phase Deposition
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
162
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-07-12
繳交日期
Date of Submission
2005-07-15
關鍵字
Keywords
光催化、氣體感測、二氧化鈦、液相沉積法
liquid phase deposition, titanium dioxide, Photocatalyst
統計
Statistics
本論文已被瀏覽 5733 次,被下載 2851
The thesis/dissertation has been browsed 5733 times, has been downloaded 2851 times.
中文摘要
研究一種新的絕緣膜沉積技術-液相沉積法生長二氧化鈦膜,並探討此技術對於製程二氧化鈦光催化劑,氣體感測器和電致變色元件上的應用。針對不同可能的應用,發展最適合的製程參數,並討論其薄膜特性。
首先,我們研究以液相沉積法生長二氧化鈦膜的生長參數,和二氧化鈦膜的材料特性。並且研究熱處理對於二氧化鈦膜特性和研究熱處理溫度對於不同應用的影響。在研究中發現,二氧化鈦膜的結晶特性和薄膜致密性能夠被熱處理改善。在 經過400 ℃的熱處理後,二氧化鈦銳鈦礦結構能夠被獲得。然而以液相沉積法生長的二氧化鈦膜由銳鈦礦結構轉為金紅石結構的轉相溫度為900 ℃。經過氧氣的熱處理後,以液相沉積法生長的二氧化鈦膜的折射率可以達到2.46,而其介電常數可以達到17。在以液相沉積法生長二氧化鈦膜在砷化鎵基板的實驗中,我們發現生長溶液會蝕刻砷化鎵基板。造成薄膜中會含有砷和鎵元素。在經過400 ℃的熱處理後可改善其電壓-電容特性,但是漏電流也會增加。
我們也用液相沉積法成長二氧化鈦膜製成電致變色膜,並探討其電致變色的能力。利用液相沉積法在透明導電玻璃基板上生長二氧化鈦膜,其過程簡單、成本低廉、而且成長溫度低 (40 ℃),值得進一步研究。利用掃描式電子顯微鏡 (SEM)、拉曼光譜(Raman Spectroscopy)、紫外光可見光譜,探討薄膜的特性,並由實驗結果顯示具最大穿透率變化量為45 %。
為求擴大液相沉積法二氧化鈦膜的應用範圍和價值,我們也研究液相沉積法二氧化鈦膜摻雜鈮(Nb)和貴重金屬金和鉑(Au、Pt)的製程方法,並探討經過摻雜後的薄膜特性。最後我們探討以液相沉積法生長的二氧化鈦膜其光催化特性和對氧氣的感測特性,並且和經過摻雜的薄膜比較。實驗結果顯示,以液相沉積法生長的二氧化鈦膜摻雜鈮之後其光催化特性為未摻雜的四倍,並且對氧氣的感測性上,也有最大的靈敏度和最短的反應時間。
Abstract
Liquid Phase Deposited (LPD) TiO2 film technology and the characterization of films were described in detail in this thesis. The LPD-TiO2 film can be utilized in electrochromic, photocatalyst and gas sensor devices. The optimum parameters for deposition of LPD-TiO2 were studied.
First of all, we study the deposition properties and deposition parameter of LPD-TiO2 film. The effect of heating treatment on LPD-TiO2 film was investigated in this thesis. The as-deposited LPD-TiO2 film is amorphous and the TiO2 anatase phase can be obtained by annealing at 400 ℃. The rutile phase can be observed at the annealing temperature of 900 ℃. After annealing, the crystalling characteristic of LPD-TiO2 film can be improved and its refractive index can reach 2.46 annealed in O2 ambience. Its dielectric constant can be as high as 17 at annealing temperature of 700 ℃ in O2 ambience.
LPD-TiO2 film can deposit on GaAs substrate successfully. The GaAs was etched by the treatment solution during deposition. Therefore, Ga and As are contained in the LPD film. The C-V characterization can be improved at annealing 400 ℃. But the leakage current increases with higher annealing temperature.
The electrochromic (EC) phenomena of TiO2 have been first reported by Inoue et al., where the films are prepared by hydrolysis of titanium tetraoxide. The film shows cathodic coloration and turns dark blue. The LPD-TiO2 film was deposited at 40 ℃ with (NH4)2TiF6 in the process of 0.1 M and 0.2 M boric acid. The films were transparent in the visible range and can be colored in a 1M LiClO4 + propylene carbonate solution. The deposition rate can be controlled quite well at 43 nm/hours. The 270 nm thickness LPD-TiO2 film gives the best electrochromic characteristic.
In order to further strength the feasibility and enlarge the application of LPD-TiO2 film. The characterizations of Nb, Au and Pt doped LPD-TiO2 film were investigated. The concentrations of Nb and Au in the film can be controlled by adjusting the concentrations of Nb and Au source solution added into the treatment solution, respectively. The Nb, Au and Pt species in the LPD-TiO2 film are Nb2O5, metallic Au and Pt(OH)x, respectively. The crystallite size of metal-doped LPD-TiO2 film is smaller than that of pure LPD-TiO2 film.
The photocalytic activities of undoped and Nb-doped LPD-TiO2 film were investigated. The photocatalytic activity of Nb-doped LPD-TiO2 film is about four times higher than that of pure LPD-TiO2 film.
The gas sensing properties of undoped and Nb, Au and Pt-doped LPD-TiO2 films were investigated for oxygen detection sensitivity. Experimental results show that the Nb-doped LPD-TiO2 film displays the highest in oxygen detection, and the Nb-doped LPD-TiO2 film has also a shorter response time.
目次 Table of Contents
Acknowledgment
中文摘要 I
Abstract III
Contents VI
Figure Captions VIII

Chapter 1 Introduction 1
1.1 TiO2: An Introduction 1
1.2 Preparations of TiO2 2
1.3 Motivation 3
1.4 Thesis Organization 6

Chapter 2 Experiment 7
2.1 Deposition Procedures 7
2.1.1 Si Wafer Cleaning Procedures 7
2.1.2 GaAs Wafer Cleaning Procedures 8
2.1.3 Glass Substrates Cleaning Procedures 8
2.2 Preparation of Deposition Solution 9
2.2.1 Preparation of (NH4)2TiF6 Solution 9
2.2.2 Preparation of Boric Acid Solution 10
2.3 Film Growth 10
2.4 Equipments 10
2.5 Basic Mechanism 11
2.6 Characterization 12
2.6.1 Physical and Chemical Properties 12
2.6.2 Electrical Properties 12

Chapter 3 As-Deposited LPD-TiO2 Film 17
3.1 Introduction 17
3.2 Growth Parameters 17
3.2.1 Concentration of Boric Acid 17
3.2.2 Deposition Time and H2O Addition 19
3.2.3 Structure Determination of LPD-TiO2 Film 20
3.3 Chemical Reaction and Growth Mechanism for LPD-TiO2 20
3.4 Electrical Characteristics 23

Chapter 4 Annealing of LPD-TiO2 Film 39
4.1 Introduction 39
4.2 Experiment 39
4.3 Structures Analysis of Post-annealed LPD-TiO2 Films 39
4.3.1 X-ray Diffraction Studies 39
4.3.2 Crystalline Size 40
4.3.3 Raman Spectrum 41
4.4 Physical and Chemical Analyses of Post-annealed LPD-TiO2 Films 42
4.5 Electrical Characteristics 45

Chapter 5 LPD-TiO2 Deposited on GaAs 62
5.1 Introduction 62
5.2 Experiment 62
5.3 Growth Characterization 63
5.4 Thermal Treatment Effects 65
5.4.1 XPS Analysis 65
5.4.2 Electrical Characteristics 66
5.5 Summary 68

Chapter 6 Electrochromic Property of the LPD-TiO2 Film 77
6.1 Introduction 77
6.2 Experiment 77
6.3 Electrochromic Reaction 78
6.4 Deposition of LPD-TiO2 Film on ITO-coated Glass 80
6.5 Optical Properties 80
6.6 Summary 82

Chapter 7 Doping of LPD-TiO2 Film 97
7.1 Introduction 97
7.2 Nb-doped LPD-TiO2 Film 98
7.2.1 Preparation of deposition solution 98
7.2.2 Properties of Nb-doped LPD-TiO2 Film 98
7.3 Au- and Pt-doped LPD-TiO2 Film 100
7.3.1 Preparation of Deposition Solution 100
7.3.2 Properties of Au-doped LPD-TiO2 film 101
7.3.3 Properties of Pt-doped LPD-TiO2 film 102
7.4 Summary 103

Chapter 8 Photocatalytic and Gas Sensing Properties of LPD-TiO2 Film 118
8.1 Photocatalytic Properties 118
8.1.1 Introduction 118
8.1.2 Mechanisms of TiO2 Photocatalysis 118
8.1.3 Experiment 120
8.1.4 Results and Discussion 121
8.2 Gas Sensing Properties 123
8.2.1 Introduction 123
8.2.2 Mechanism of the Gas Sensor 123
8.2.3 Experiment 123
8.2.4 Results and Discussion 124
8.3 Summary 126

Chapter 9 Conclusion and Future Works 135
9.1 Conclusions 135
9.2 Future Works 137

Reference 139

Publication List 157

Autobiography 162
參考文獻 References
Chapter 1
[1.1] J. P. Rino, and N. Studart, “Sturcture Correlations in Titanium Dioxide”, Phys. Rev. B, vol, 59, no. 10, pp. 6643-6649, 1999.

[1.2] M. D. Wiggins, M. C. Nelson, and C. R. Aita, “Phase Development in Sputter Deposited Titanium Dioxide”, J. Vac. Sci. Technol. A, vol. 14, no. 3, pp. 772-776, 1996.

[1.3] J. H. Braun, A. Baidins, and R. E. Marganski, “TiO2 Pigment Technology - A Review”, Pro.Org. Coat., vol. 20, no. 2, pp. 105-138,1992.

[1.4] A. Fujishima and K. Honda, Nature, vol. 238, pp. 37, 1972.

[1.5] H. Kishimoto, K. Takahama, N. Hashimoto, Y. Aoi, and S. Deki, “Photocatalytic activity of titanium oxide prepared by liquid phase deposition (LPD)”, J. Mater. Chem., vol. 8, No. 9, pp. 2019-2024, 1998.

[1.6] L. M. Doeswijk, H. H. C. de Moor , D. H. A. Blank, H. Rogalla, “Passivating TiO2 coatings for silicon solar cells by pulsed laser deposition”, Appl. Phys. A, vol. 69, Suppl., pp. s409-s411, 1999.

[1.7] V. Kiisk, I. Sildos , O. Sild, and J. Aarik, “The influence of a waveguiding structure on the excitonic luminescence of anatase thin films”, Optical Materials, vol. 27, no. 1, pp. 115-118, 2004.

[1.8] S. A. Campbell, D. C. Gilmer, X. C. Wang, M. T. Hsieh, H. S. Kim, W. L. Gladfelter, and J. Yan, “MOSFET Transistors Fabricated with High Permitivity TiO2 Dilelectrics”, IEEE Trans. Electron Devices, vol. 44, no. 1, pp. 104-109, 1997.

[1.9] G. P. Burns, I. S. Bladwin, M. P. Hastings, and J. G. Wilkes, “The Plasma oxidation of titanium thin films to form dielectric layers”, J. Appl. Phys., vol. 66, no. 6, pp. 2320-2324, 1989.

[1.10] G. San Vicente, A. Morales, and M. T. Gutierrez, “Preparation and characterization of sol-gel TiO2 antirefective coatings for silicon”, Thin Solid Films, vol. 391, pp. 133-137, 2001.

[1.11] J. V. Grahn, M. Linder, and E. Fredriksson, “In situ of evaporated TiO2 thin film using oxygen radicals: Effect of deposition temperature”, J. Vac. Sci. Technol. A, vol. 16, no. 4, pp. 2495-2500, 1998.

[1.12] R. Dannenberg, and P. Greene, “Reactive sputter deposition of titanium dioxide”, Thin Solid Films, vol. 360, pp. 122-127, 2000.

[1.13] K. S. Yeung, and Y. W. Lam, “A Simple Chemical Vapour Deposition Method for Depositing Thin TiO2 Films”, Thin Solid Films, vol. 109, pp. 169-178, 1983.

[1.14] G. A. Battiston, R. Gerbasi, A. Gregori, M. Porchia, S. Cattarin, and G. A. Rizzi, “PECVD of amorphous TiO2 thin films: effect of growth temperature and plasma gas composition”, Thin Solid Films, vol.371, pp. 126-131, 2000.

[1.15] H. S. Kim, D. C. Gilmer, S. A. Campbell, and D. L. Polla, “Leakage current and electrical breakdown in metal-organic chemical vapor deposited TiO2 dielectrics on silicon substrates”, Appl. Phys. Lett., vol. 69, No. 25, pp. 3860-3862, 1996.

[1.16] Y. Gao, and S. A. Chambers, “MBE growth and characterization of epitaxial TiO2 and Nb-doped TiO2 films”, Mater. Lett., vol. 26, pp. 217-221, 1996.

[1.17] H. Nagayama, H. Honda, and H. Kawahara, “A New Process for Silica Coating”, J. Electrochem. Soc., vol. 135, pp. 2013-2016, 1988.

[1.18] C. F. Yeh, S. S. Lin, and T. Y. Hong, “Low-Temperature Processed MOSFET,s with Liquid-Phase Deposited SiO2-xFx as Gate Insulate”, IEEE Electron Device Lett., vol. 16, no. 7, pp. 316-318, 1995.

[1.19] C. F. Yeh, S. S. Lin, C. L. Chen, and Y. C. Yang, “Novel Technique for SiO2 Formed by Liquid-Phase Deposition for Low-Temperature Processed Polysilicon TFT”, IEEE Electron Device Lett., vol. 14, no. 8, pp. 403-405, 1993.

[1.20] S. Deki, Y. Aoi, O. Hiroi, A. Kajinami, “Titanium (IV) Oxide Thin Films Prepared from Aqueous Solution”, Chem. Lett., pp. 433-434, 1996.

[1.21] H. Kishimoto, K. Takahama, N. Hashimoto, Y. Aoi, and S. Deki, “Photocatalytic activity of titanium oxide prepared by liquid phase deposition (LPD)”, J. Mater. Chem., vol. 8, no. 9, pp. 2019-2024, 1998.

[1.22] S. K. Deb, “Optical and Photoelectric Properties and Colour Centres in Thin Films of Tungsten Oxide”, Philos. Mag., Vol. 27, pp. 801-822, 1973.

[1.23] H. Demiryont, “ Quasi-symmetric electrochromic device for light modulation”, Appl. Opt., vol. 31, no. 2, pp. 250-254, 1992.

[1.24] H. N. Cui, Manuel F. Costa, V. Teixeira, I. Porqueras, and E. Bertran, “Electrochromic coatings for smart windows”, Surf. Sci., vol. 532, pp. 1127-1131, 2003.

[1.25] John P, Ziegler, “Status of reversible electrodeposition electrochromic devices”, So. Energy mater. Sol. Cell, vol. 56, no. 3-4, pp. 477-493, 1999.

[1.26] T. J. Richardson, “New electrochromic mirror systems”, Solid State Ionics, vol. 165, pp. 305-308, 2003.

[1.27] C. G. granqvist, E. Avendano, and A. Azens, “Electrochromic coatings and devices: Survey of some recent advances, Thin Solid Films, vol. 442, pp. 201-211, 2003.

[1.28] E. Inoue, H. Kokado, and A. Izawa, “Electrochromism of Titanium Oxide”, Oyo Buturi., vol. 43, p. 54, 1974.

[1.29] N. Serpone, and D. Lawless, “Spectroscopic, Photoconductivity, and Photocatalytic Studies of TiO2 Colloids: Naked and with the lattice Doped with Cr3+, Fe3+, and V5+ cations”, Langmuir, vol. 10, pp. 643-652, 1994.

[1.30] S. W. Ryu, E. J. Kim, S. K. Ko, S. H. Hahn, “Effect of cacination on the structural and optical properties of M/TiO2 thin films by RF magnetron co-sputtering”, Mater. Lett., vol. 58, pp. 582-587, 2004.

[1.31] R. K. Sharma, M. C. Bhatnagar, and G. L. Sharma, “Effect of Nb metal ion in TiO2 oxygen gas sensor”, Appl. Surf. Sci., vol. 92, pp. 647-650, 1996.

[1.32] G. Sberveglieri, E. Comini, G. Faglia, M. Z. Atashbar, and W. Wlodarski, “Titanium dioxide thin films prepared for alcohol microsensor applications”, Sens. and Actuators B, vol. 66, pp. 139-141, 2000.

[1.33] K. Galatsis, Y. X. Li, W. Wlodarsky, E. Comini, G. Sberveglieri, C. Cantalini, S. Santucci, and M. Passacantando, “Comparison of single and
binary oxide MoO3, TiO2 and WO3 sol–gel gas sensors”, Sens. Actuators B, vol. 83, pp. 276-280, 2002.

[1.34] Y. Yamada, Y. Seno, Y. Masuoka, T. Nakamura, and K. Yamashita, “NO2 sensing characteristics of Nb doped TiO2 thin films and their electronic properties”, Sens. Actuators B, vol. 66, pp. 164-166, 2000.

[1.35] T. Iwanaga, T. Hyodo, Y. Shimizu, M. Egashira, “H2 sensing properties and mechanism of anodically oxidized TiO2 film contacted with Pd electrode”, Sens. Actuators B, vol. 93, pp. 519-525, 2003.

[1.36] H. Kishimoto, K. Takahama, N. Hashimoto, Y. Aoi, and S. Deki, “Photocatalytic activity of titanium oxide prepared by liquid phase deposition (LPD)”, J. Mater. Chem., vol. 8, no. 9, pp. 2019-2024,1998.

Chapter 2
[2.1] S. K. Ghandhi, “Etching and Cleaning”, in VLSI Fabrication Principles (2nd ed.), Wiley Interscience, New York, 1994.

Chapter 3
[3.1] H. N. Chua, K. L. Pey, W. H. Lai, J. W. Chai, J. S. Pan, D. H. C. Chua, and S. Y. Siah, “X-ray photoemission sepectroscopy study of silicidation of Ti on BF2+-implanted polysilicon”, J. Vac. Sci. technol. B, vol. 19, no. 6, pp. 2252-2257, 2001.

[3.2] M. K. Lee, C.M. Shih, W.H. Shieh, “Characteristics and growth mechanisms of TixSi(1−x)Oy films by liquid phase deposition”, Appl. Phys. A, vol. 74, pp. 249-251, 2002.

[3.3] D. J. Won, C. H. Wang, H. K. Jang, and D. J. Choi, “Effects of thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2 films on structural and optical properties”, Appl. Phys. A, vol. 73, pp. 595-600, 2001.

[3.4] N. Jiang, H. J. Zhang, S. N. Bao, Y. G. Shen, Z. F. Zhou, “XPS study for reactively sputtered titanium nitride thin films deposited under different substrate bias”, Physica B, vol. 352, pp. 118-126, 2004.

[3.5] J. G Yu, H. G. Yu, B. Cheng, X. J. Zhao, J. C. Yu, and W. K Ho, “The Effect of Calcination Temperature on the Surface Microstructure and Photocatalytic Activity of TiO2 Thin Films Prepared by Liquid Phase Deposition”, J. Phys. Chem. B, vol. 107, pp. 3871-13879, 2003.

[3.6] S. Deki, Y. Aoi, O. Hiroi and A. kajinami, “Titanium (IV) oxide Thin Films Prepared from Aqueous Solution”, Chem. Lett., pp.433, 1996.

[3.7] W. J. Chang, M. P. Houng, and Y. H. Wang, “Fourier Transform Infrared Characterization of Moisture Absorption in SiOF Films”, Jpn. J. Appl. Phys., vol. 38, pp.4642-4647, 1999.

[3.8] T. Kamada, M. Kitagawa, M. Shubuya and T. Hirao, “Jap. J. Appl. Phys., vol. 30, p. 3594, 1991.

[3.9] L. M. Terman, “An Investigation of Surface States at a Silicon/Silicon oxide Interface Employing Metal-Oxide-Silicon Diodes”, Solid- State Electron., vol. 5, pp. 285-299, 1962.

[3.10] S. M. Sze, “Physics of Semiconductor Devices”, ( John Wiley & Sons, New York, 1981) 2nd ed., Chap. 7.

[3.11] C. F. Yeh, C. L. Chen, and G. H. Lin, “The Physichemical Properties and Growth Mechanism of Oxide (SiO2-xFx) by Liquid Phase Deposition with H2O Addition Only”, J. Electrochem. Soc., vol. 141, no. 11, pp. 3177-3181, 1994.

[3.12] T. P. Niesen, J. Bill, and F. Aldinger, “Deposition of Titania Thin Films by a Peroxide Route on Different Functionalized Organic Self-Assembled Monolayers”, Chem. Mater., vol. 13, pp. 1552-1559, 2001.

[3.13] C. Y. Chang and S. M. Sze, “ULSI Technology”, (McGraw-Hill, New York, 1996), p. 60.

Chapter 4
[4.2] B. D. Cullity and S. R. Stock, “Elements of X-ray diffraction”, (Prentice Hall, Third Edition 2001), Chap. 5, p. 170.

[4.3] T. Ohsaka, F. Izumi, and Y. Fujiki, “Raman Spectrum of Anatase, TiO2”, J. Raman Spectrosc., vol. 7, no. 6, pp. 321-323, 1978.

[4.4] Y. H. Zhang, C. K. Chan, J. F. Porter, and W. Guo, “ Micro-Raman spectroscopic characterization of nanosized TiO2 powders prepared by vapor hydrolysis”, J. Mater. Res., vol. 13, no 9, pp 2602-2609, 1998.

[4.5] S. Kelly, F. H. Pollak, and M. Tomkiewicz, “Raman Spectroscopy as a Morphological Probe for TiO2 Aerogels”, J. Phys. Chem. B, vol. 101, pp. 2730-2734, 1997.

[4.6] J. G. Yu, H. G. Yu, B. Cheng, X. J. Zhao, J. C. Yu, and W. K. Ho, “The Effect of Calcination Temperature on the Surface Microstructure and PhotocatalyticActivity of TiO2 Thin Films Prepared by Liquid Phase Deposition”, J. Phys. Chem. B, vol. 107, pp. 13871-13879, 2003.

[4.7] R. J. Gonzalez and R. Zallen, “Infrared reflectivity and lattice fundamentals in anatase TiO2”, Phys. Rev. B, vol. 55, pp. 7014-7017, 1997.

[4.8] Y. Gao, Y. Masuda, Z. Peng, T. Yonezawa, and K. Koumoto, “Room temperature deposition of a TiO2 thin film from aqueous preoxotitanate solution”, J. Mater. Chem., vol.13, pp. 608-613, 2003.

[4.9] K. Nasu and Y. Toyozawa, “Tunneling Process from Free State to Self-Trapped State of Exciton”, J. Phys. Soc. Jap., vol. 50, no. 1, pp. 235-245, 1981.

[4.10] B. C. Kang, S, B. Lee, and J. H. Boo, “Growth of TiO2 thin film on Si(100) substrates using single molecular precursors by metal organic chemical vapor deposition”, Surf. Coat. Technol., vol. 131, pp. 88-92, 2000.

Chapter 5
[5.1] P. D. Ye, G. D. Wilk, J. Kwo, B. Yang, H.-J. L. Gossmann, M. Frei, S. N. G. Chu, J. P. Mannaerts, M. Sergent, M. Hong, K. K. Ng, and J. Bude, “GaAs MOSFET With Oxide Gate Dielectric Grown by Atomic Layer Deposition”, IEEE Electron Device Lett., vol. 24, no.. 4, pp. 209-211, 2003.

[5.2] J. I. Maeda, Y. Sasaki, N. Dietz, K. Shibahara, S. Yokoyama, S. Miyazaki and M. Hirose, “High-Rate GaAs Epitaxial Lift-Off Technique for Optoelectronic Integrated Circuits”, Jpn. J. Appl. Phys. Part 1, vol. 36 no. 3B, pp. 1554-1557, 1997.

[5.3] F. Negri and E. Bedel-Pereira, “Improved surface treatments for recycled (100) GaAs substrates in view of molecular-beam epitaxy growth: Auger electron spectroscopy, Raman, and secondary ion mass spectrometry analyses”, J. Vac. Sci. Technon. B, vol. 20, no. 6, pp. 2214-2218. 2002.

[5.4] D. J. Won, C. H. Wang, H. K. Jang, and D. J. Choi, “Effect of thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2 films on structural and optical properties”, Appl. Phys. A, vol. 73, pp. 595-600, 2001.

[5.5] E. C. Plappert, K. H. Dahmen, R. Hauert, and K. H. Ernst, “Deposition of Amorphous Titanium Oxide Films Using Alkoxy (pyrazolylborate) titanium (IV) Compounds”, Chem. Vap. Deposition, vol. 5, no. 2, pp. 79-85, 1999.

[5.6] J. X. Wu, F. Q. Li, J. S. Zhu, Z. M. Wang, M. R. Ji, and M. S. Ma, “The annealing behavious of a Cs2O/GaAs(110) surface studied by electron spectroscopy”, J. Phus.: Condens. Matter., vol. 13, pp. 8725-8731, 2001.

[5.7] J. G Yu, H. G Yu, B. Cheng, X. J. Zhao, J. C. Yu, and W. K Ho, “The Effect of Calcination Temperature on the Surface Microstructure and Photocatalytic Activity of TiO2 Thin Films Prepared by Liquid Phase Deposition”, J. Phys. Chem. B, vol. 107, pp. 3871-13879, 2003.

[5.8] M. Passlack, M. Hong, J. P. Mannaerts, and R. L. Opila, “Thermodynamic and photochemical stability of Low interface state density Ga2O3-GaAs structures fabricated by in situ molecular beam epitaxy”, Appl. Phys. Lett., vol. 69, no. 3, pp. 302-304, 1996.

[5.9] A. Lezau, B. Skadtchenko, M. Trudeau, and D. Antonelli, “Mesoporous Ta oxided with bis(toluene)Ti: electronic properties and mechanistic considerations of nitrogen cleavage on the low valent surface”, Dalton Trans., pp.4115-4120, 2003.

[5.10] J. T. Wolan, C. K. Mount, and G. B. Hoflund, “Chemical reaction induced by the room temperature interaction of hyperthermal atomic hydrogen with the native oxide layer on GaAs(001) surfaces studied by ion scattering spectroscopy and x-ray photoelectron spectroscopy”, J. Vac. Sci. Technol. A, vol. 15, no. 5, pp. 2502-2507, 1997.

[5.11] B. C. Kang, S. B. Lee, and J. h. Boo, “Growth of TiO2 thin film on Si(100) substrates using single molecular precursors by metal organic chemical vapor deposition”, Surf. & Coat. Tech., vol. 131, pp. 88-92, 2000.

[5.12] N. F. Wang, W. J. Chang, M. P. Houng, Y. H. Wang, and C. J. Huang, “Deposition of high quality silicon dioxide on Hg1-xCdxTe by low-temperature liquid phase deposition method”, J. Vac. Sci. Technol. A, vol. 17, no. 1, pp. 102-107, 1999.

[5.13] A. H. Ramelan, K. S. A. Butcher, E. M. Goldys, T. L. Tansley, “High-resolution X-ray photoelectron spectroscopy of AlxGa1-xSb”, Appl. Surf. Sci., vol. 229, pp 263-267, 2004.

[5.14] P. Hill, J. Lu, L. Haworth, D. I. Westwood, and J. E. Macdonald, “An XPS study of the effect of nitrogen exposure time and temperature on the GaAs(001) surface using atomic nitrogen”, Appl. Surf. Sci., vol. 123-124, pp. 126-130, 1998.

[5.15] S. D. Wolter, J. M. DeLucca, S. E. Mohney, R. S. Kern, and C. P. Kuo, “An investigation into the early stages of oxide growth on gallium nitride”, Thin Solid Films, vol. 371, pp. 153-160, 2000.

[5.16] M. Taniguchi, T. Murakawa, and Y. Kajitani, “A novel passivation technique of GaAs power MESFETs”, Appl. Surf. Sci., vol. 56-58, pp. 827-831, 1992.

[5.17] V. M. Bermudez, “Investigation of the initial chemisorption and reaction of fluorine (XeF2) with the GaN(0001)-(1×1) surface”, Appl. Surf. Sci., vol. 119, pp. 147-159, 1997.

[5.18] M. P. Houng, C. J. Huang, Y. H. Wang, N. F. Wang, and W. J. Chang, “ Extremely low temperature formation of silicon dioxide on gallium arsenide”, J. Appl. Phys., vol. 82, no. 11, pp. 5788-5792, 1997.

[5.19] J. Tan, M. K. Das, J. A. Cooper, Jr. and M. R. Melloch, “Metal-oxide-semiconductor capacitors formed by oxidation of polycrystalline silicon on SiC”, Appl. Phys. Lett., vol. 70, no. 17, pp.2280-2281, 1997.

[5.20] A. Callegari, P. D. Hoh, D. A. Buchanan, and D. Lacey, “Unpinned gallium oxide/ GaAs interface by hydrogen and nitrogen surface plasma treatment”, Appl. Phys. Lett., vol. 54, no. 4, pp. 332-334, 1989.

Chapter 6
[6.1] S. K. Deb, “Optical and Photoelectric Properties and Colour Centres in Thin Films of Tungsten Oxide”, Philos. Mag., Vol. 27, pp. 801-822, 1973.

[6.2] E. Inoue, H. Kokado, and A. Izawa, “Electrochromism of Titanium Oxide”, Oyo Buturi., vol. 43, p. 54, 1974.

[6.3] T. Ohtsuka, M. Masuda, and N. Sato*, “Cathodic Reduction of Anodic Oxide Films Formed on Titanium,” J. Electrochem. Soc., vol. 134, pp. 2406-2409, 1987.

[6.4] B. Reichman and A. J. Bard, J. Electrochem. Soc., vol. 127, pp. 697, 1980.

Chapter 7
[7.1] N. Serpone, and D. Lawless, “Spectroscopic, Photoconductivity, and Photocatalytic Studies of TiO2 Colloids: Naked and with the lattice Doped with Cr3+, Fe3+, and V5+ cations”, Langmuir, vol. 10, pp. 643-652, 1994.

[7.2] S. W. Ryu, E. J. Kim, S. K. Ko, S. H. Hahn, “Effect of calcination on the structural and optical properties of M/TiO2 thin films by RF magnetron co-sputtering”, Mater. Lett., vol. 58, pp. 582-587, 2004.

[7.3] J. W. Yoon, T. Sasaki, N. Koshizaki, and E. Traversa, “Preparation and Characterization of M/TiO2 (M=Ag, Au, Pt) Nanocomposite Thin Films”, Scripta Mater., vol. 44, pp. 1865-1868, 2001.

[7.4] S. Deki, Y. Aoi, H. Yanagimoto, K. Ishii, K. Akamatsu, M. Mizuhata, and A. Kajinami, “ Preparation and Characterization of Au-Dispersed TiO2 Thin Films by a Liquid Phase Deposition Method”, J. Mater. Chem., vol. 6, no. 12, pp. 1879-1882, 1996.

[7.5] Y. Gao, S. Thevuthasan, D. E. McCready, and M. Engelhard, “MOCVD growth and structure of Nb- and V-doped TiO2 Films on sapphire”, J. Cryst. Growth, vol. 212, pp. 178-190, 2000.

[7.6] Rajnish K. Sharma, and M. C. Bhatnagar, “Improvement of the oxygen gas sensitivity in doped TiO2 thick films”, Sens. Actuators B, vol. 56, pp. 215-219, 1999.

[7.7] D. J. Won, C. H. Wang, H. K. Jang, and D. J. Choi, “Effect of thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2 films on structural and optical properties”, Appl. Phys. A, vol. 73, pp. 595-600, 2001.

[7.8] M. Z. Atashbar, H. T. Sun, B. Gong, W. Wlodarski, and R. Lamb, “ XPS study of Nb-doped oxygen sensing TiO2 thin films prepared by sol-gel method”, Thin Solid Films, vol. 326, pp. 238-244, 1998.

[7.9] D. Horvath, L. Toth and L. Guczi, “Gold nanoparticles: effect of treatment on structure and catalytic activity of Au/Fe2O3 catalyst prepared by co-precipitation”, Catalysis Lett., vol. 67, pp. 117-128, 2000.

[7.10] S. Lee, C. Fan, T. Wu, and Scott L. Anderson, “Agglomeration, support effects, and CO adsorption on Au/TiO2(110) prepared by ion beam deposition”, Surf. Sci., vol. 578, pp. 5-19, 2005.

[7.11] G. Kiss, V. K. Josepovits, K. Kovacs, B. Ostrick, M. Fleischer, H. Meixner, and F. Reti, “ CO sensitivity of the PtO/SnO2 and PdO/ SnO2 layer structures: Kelvin Probe and XPS analysis”, Thin Solid Films, vol. 436, pp. 115-118, 2003.

[7.12] Ana M. Ruiz, G. Dezanneau, J. Arbiol, A. Cornet, and Joan R. Morante, “Insights into the Structural and Chemical Modifications of Nb Additive on TiO2 Nanoparticles”, Chem. Mater., vol. 16, no. 5, pp. 862-871, 2004.

[7.13] H. Y. Y. Ko, M. Mizuhata, A. Kajinami, and S. Deki, “ Fabrication and characterization of Pt nanoparticles dispersed in Nb2O5 composite films by liquid phase deposition”, J. Mater. Chem., vol. 12, pp. 1495-1499, 2002.

Chapter 8
[8.1] J. G. Yu, H. G. Yu, B. Cheng, X. J. Zhao, J. C. Yu, and W. K. Ho, “The Effect of Calcination Temperature on the Surface Microstructure and PhotocatalyticActivity of TiO2 Thin Films Prepared by Liquid Phase Deposition”, J. Phys. Chem. B, vol. 107, pp. 13871-13879, 2003.

[8.2] R. Benedix, F. Dehn, J. Quaas, and M. Orgass, “ Application of Titanium Dioxide Photocatalysis to Create Self-Cleaning Building Materials”, Lacer., no. 5, pp 157-168, 2000.

[8.3] M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, “ Environmental Applications of Semiconductor Photocatalysis”, Chem. Rev., vol. 95, pp. 69-96, 1995.

[8.4] M. S. Jeon, T. K. Lee, D. H. Kim, H. Joo, and H. T. Kim, “ The enhancement of redox reaction with mixed oxide catalysts by the sol-gel process”, Sol. Energy Mater. Sol. Cells, vol. 57, pp. 217-227, 1999.

[8.5] M. Li, Y. Chen “ An investigation of response time of TiO2 thin film oxygen sensors”, Sens. Actuators B, vol. 32, pp. 83-85, 1996.

[8.6] Y. Yamada, Y. Seno, Y. Masuoka, T. Nakamura, and K. Yamashita, “ NO2 sensing characteristics of Nb doped TiO2 thin films and their electronic properties”, Sens. Actuators B, vol. 66, pp. 164-166, 2000.

[8.7] T. Iwanaga, T. Hyodo, Y. Shimizu, and M. Egashira, “H2 sensing properties and mechanism of anodically oxidized TiO2 film contacted with Pd electrode”, Sens. and Actuators B, vol. 93, pp. 519-525, 2003.

[8.8] K. Galatsis, Y.X. Li, W. Wlodarsky, E. Comini, G. Sberveglieri, C.
Cantalini, S. Santucci, and M. Passacantando, “Comparison of single and
binary oxide MoO3, TiO2 and WO3 sol-gel gas sensors”, Sens. Actuators B, vol. 83, pp. 276-280, 2002.

[8.9] R. K. Sharma, M. C. Bhatnagar, G. L. Sharma, “ Mechanism in Nb doped titania oxygen gas sensor”, Sens. Actuators B, vol. 46, pp. 194-201, 1998.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code