Responsive image
博碩士論文 etd-0715105-131352 詳細資訊
Title page for etd-0715105-131352
論文名稱
Title
探討不同懸浮顆粒在沉降與再懸浮作用中之水動力行為
Inferred Hydrodynamic Behavior of Suspended Particles from Settling and Resuspension Processes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
123
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-06-20
繳交日期
Date of Submission
2005-07-15
關鍵字
Keywords
再懸浮作用、懸浮顆粒、水動力行為、沉降、(非)碎屑性顆粒
settling, suspended particles, resuspension processes, hydrodynamic behavior
統計
Statistics
本論文已被瀏覽 5651 次,被下載 956
The thesis/dissertation has been browsed 5651 times, has been downloaded 956 times.
中文摘要
摘要
本研究之科學目的為探討不同懸浮顆粒在沉降與再懸浮作用中之水動力行為。過去對於海洋懸浮顆粒之物理和生地化的特質對其水動力之行為並未涉及很多,因此,期望透過本研究以達到全方位觀察懸浮顆粒之運動行為。懸浮顆粒之傳輸作用,會受到顆粒本身粒徑及其密度等兩個重要因素來控制沈降速度及水中之運動,並進而影響懸浮顆粒的分佈特性。本研究區域位於台灣西南海域高屏陸棚與高屏海底峽谷,現場實驗方法主要是以錨碇儀器進行高屏陸棚與峽谷之時間序列觀測,觀測項目包括水文、流場及懸浮顆粒濃度場等時間序列資料。另一方法是透過海研三號研究船,於高屏峽谷轉折處進行觀測瞬時水文、流場及懸浮顆粒濃度場等垂直空間資料,同時採集水樣,將多種方式之觀測結果加以整合分析。
根據高屏陸棚之時空觀測結果顯示,懸浮顆粒越接近底部則粗顆粒濃度較大,細顆粒在上層濃度較大。陸棚地區之懸浮粗顆粒(> 250 μm)和鹽度的相關性較高,以非碎屑性物質為主,而細顆粒則受到流速影響較大,以碎屑性物質為主要組成。懸浮顆粒在水體中之分佈主要受到當地流場影響,不同粒徑濃度在水層之分佈會隨著流速改變,流速強分佈結構以粗顆粒為主,流速弱則以細顆粒為主要分佈。
高屏峽谷之懸浮顆粒濃度會隨著深度而逐漸增加,但由LISST-100與水樣分析峽谷垂直之顆粒分佈觀測,兩者呈現相反的結構分佈,顯示不同觀測方法會導致不同觀測結果,必須由水動力觀點來檢驗。佈放於峽谷上下層之沉積物串列有一致的潮汐訊號,大潮潮流能量大時,水體中之沉降顆粒濃度較大,由較多非碎屑性顆粒組成。進一步分析峽谷碎屑性與非碎屑性顆粒之粒徑,發現非碎屑性顆粒以較粗顆粒(> 63 μm)為主。由懸浮顆粒總重量之證據顯示峽谷底部之沉積物顆粒並非完全由上層沉降至下層,可能由於底層強勁的潮流運動,使懸浮顆粒有水平搬運及再懸浮作用。
不同種類顆粒受不同水動力作用控制其分佈情形。高屏海底峽谷與近岸陸棚其懸浮顆粒之運動,往覆性潮流作用可以有效的驅動懸浮顆粒傳輸。
Abstract
Abstract
The goal of this study is to infer the nature of suspended particles from settling, advection, and resuspension processes. Previous studies have not shown that the influence of physical and biogeochemical nature on the behavior of suspended particles. Therefore we expect to observe differential hydrodynamic behavior of suspended particles of different nature in the study. The size distribution of suspended particles is a variable of sediment transport. Size and density, which play a major role in distribution of particles through the water column, are two of primary factors in determining the settling velocity of suspended particles. The sites of the field experiments were located on the Kao-ping Shelf and Kao-ping Submarine Canyon in Southern Taiwan in order to observe resuspension and settling processes. The field experiments were conducted to deploy moored instruments at the two study sites for collecting the time series data. The experiments also included profiling of temporal and special particle and hydrographic parameters along the Kao-ping Submarine Canyon using R/V Ocean Researcher III. In this study we employed a multidisciplinary approach to the study of suspended particles on a plainer inner shelf and sinuous submarine canyon.
Base on the observations on the Kao-ping Shelf, the concentration of coarse-grained suspended particles near the bottom was greater than near the surface, and the fine-grained suspended particles was greater near the surface than the bottom. Coarse-grained suspended particles had better correlation with salinity of which nonlithogenic matters were the primary constituents. Fine-grained suspended particles, which consist mainly of lithogenic matters, were affected more by the current. Initial analysis of the data showed that local current speed controlled the distribution of different sizes particles. When strong currents were present, there were more coarse-grained suspended particles. Conversely, there were more fine-grained suspended particles.
Regarding the temporal and special observations in the Kao-ping Submarine Canyon, the concentration of suspended particles increased with depth. The compositions of suspended particles measured by LISST-100 and water samples in the submarine canyon showed opposite trends. It revealed that different methods lead to different results. The two sediment trap arrays deployed in submarine canyon were influenced by oscillatory tidal currents. In spring tide there was high concentration of settling particles, which is composed of nonlithogenic materials. Suspended particles in the lower part of the submarine canyon did not all come from the upper part of the canyon but were transported by strong tidal currents to the observed site.
The distributions of different sizes particles were the result by different hydrodynamic behavior due to nature of particles. Oscillatory tidal currents could affect the transports of suspended particles from the Kao-ping continental shelf to the Kao-ping Submarine Canyons.
目次 Table of Contents
目錄
章次 頁次
誌謝 --------------------------------------------------- I
中文摘要 --------------------------------------------- III
英文摘要 ---------------------------------------------- IV
目錄 -------------------------------------------------- VI
表目錄 ------------------------------------------------ IX
圖目錄 ------------------------------------------------- X
第一章、序論 ------------------------------------------- 1
1-1、前言 ---------------------------------------------- 1
1-2、研究目的 ------------------------------------------ 5
第二章、研究區域 --------------------------------------- 6
2-1、高屏峽谷河海動力系統介紹 -------------------------- 6
2-1-1、高屏溪 ------------------------------------------ 6
2-1-2、高屏陸棚及斜坡高屏峽谷 -------------------------- 7
2-1-3、高屏峽谷 ---------------------------------------- 9
2-2、前人研究 ----------------------------------------- 11
第三章、現場觀測與分析方法 ----------------------------- 14
3-1、實驗設計理念與測線規劃 --------------------------- 14
3-2、觀測儀器設備介紹及現場佈放 ----------------------- 16
3-2-1、船測儀器設備 ----------------------------------- 16
3-2-2、時空觀測 (剖面) -------------------------------- 17
3-2-3、錨碇儀器設備 ----------------------------------- 17
1. 四腳架 --------------------------------------------- 18
2. 沉積物收集器串 ------------------------------------- 21
3-3、實驗室樣品分析 ----------------------------------- 25
3-3-1、水樣代表性分析 --------------------------------- 25
3-3-2、沉積物收集器樣品分樣 --------------------------- 25
3-3-3、沉積物收集器樣品洗鹽 --------------------------- 26
3-3-4、雷射粒徑分析 ----------------------------------- 26
3-4、時序分析 ----------------------------------------- 27
3-4-1、頻譜分析 --------------------------------------- 27
3-4-2、經驗正交函數 ----------------------------------- 28
第四章、觀測結果與資料分析 ---------------------------- 29
4-1、高屏陸棚時空觀測 --------------------------------- 29
4-1-1、觀測資料處理與描述 ------------------------------ 29
4-1-2、近岸水文環境 ----------------------------------- 31
4-1-3、懸浮沉積物分析 --------------------------------- 34
4-1-4、再懸浮沉積物事件 ------------------------------- 40
4-2、高屏海底峽谷時空觀測 ----------------------------- 45
4-2-1、水文環境變化 ----------------------------- 45
4-2-2、懸浮顆粒垂直分佈 ------------------------------- 48
4-2-3、連續水樣分析結果 ------------------------------- 52
4-3、高屏海底峽谷時序觀測 ----------------------------- 54
4-3-1、峽谷水文環境 ----------------------------------- 54
4-3-2、懸浮顆粒時空分佈 ------------------------------- 58
4-3-3、區分不同方法所測量之懸浮顆粒--------------------- 65
4-3-4、沉降作用探討 ----------------------------------- 70
4-3-5、經驗函數結果 ----------------------------------- 78
第五章、討論 ------------------------------------------ 83
5-1、分析懸浮顆粒濃度方法之比較 ------------------------ 83
5-2、高屏陸棚及近岸輸出對高屏峽谷懸浮顆粒之傳輸機制 --- 89
5-3、比較不同粒徑之沉降速度 --------------------------- 91
第六章、 結論 ----------------------------------------- 93
第七章、 參考文獻 ------------------------------------- 95
附錄 ------------------------------------------------- 101
參考文獻 References
參考文獻
王薇喬(2003)高屏峽谷與南海北部沉積物收集器的有孔蟲組合及
其穩定同位素之季節性變化。國立中山大學海洋地質及化學研
究所碩士論文,共98頁。
俞何興(1995)台灣海域之地質分區初探。地質 15卷,1期,1~14
頁。
俞何興(1997)台灣海域之地質分區初探。地質 17卷,1期,1~14
頁。
許峻嵐(2000)高屏海域沉積物重金屬之分佈與污染史。國立中山
大學海洋地質及化學研究所碩士論文,共133頁。
馮世墩(1988)高屏峽谷底層流的變化。國立台灣大學海洋研究所
碩士論文。
吳德泰(1996)高屏峽谷水文特性之調查與研究。國立中山大學海
洋資源研究所碩士論文,共73頁。
吳孟麟(2004)高屏海底峽谷與陸棚流場之研究。國立中山大學海
洋地質及化學研究所碩士論文,共119頁。
黃炯賢(1996)曾文溪河口近岸沉積系統之沉積物粒徑分佈型態研
究。國立中山大學海洋地質及化學研究所碩士論文。共94頁。
黃俊傑(2001)從高屏峽谷水文之時空變化來探討懸浮物質傳輸的
機制。國立中山大學海洋資源研究所碩士論文。共101頁。
張育嘉(2001)高屏峽谷及附近海域之流場觀測。國立中山大學海
洋資源研究所碩士論文。,共91頁。
楊鈞析(2001)高屏溪流域陸源物質之剝蝕與傳輸。國立中山大學
海洋地質及化學研究所,共127頁。
劉坤章(1999)從沉積物粒徑的分布來看高屏溪口近岸海域的沉積
物傳輸。國立中山大學海洋地質及化學研究所,共99頁。
劉維欣(2000)台灣東北海域沉降顆粒組成與粒徑分佈之研究。國
立中山大學海洋地質及化學研究所,共91頁。

Agrawal, Y. C. and Pottsmith, H. C., 2000. Instruments for
particle size settling velocity observations in
sediment transport. Marine Geology, Vol. 168, pp.89-
114.
Agrawal, Y. C. and Traykovski, P., 2001. Particles in the
bottom boundary layer: Concentration and size dynamics
through events. Journal of Geophysical Research, Vol.
106, pp.9533-9542.
Allen, J. R. L., 1970. Physical Processes of
Sedimentation. American Elsevier Publishing Company,
Inc. 52Vanderbilt Avenue, New York 10017.
Allen, S. E., 1996. The influence of canyons on the shelf
currents: A theoretical study. Journal of Geophysical
Research, Vol. 101, No. C8. pp. 18043-18059.
Andersen, T. J. and Pejrup, M., 2002. Biological Mediation
of the Settling Velocity of Bed Material Eroded from
an Intertidal Mudflat the Danish Wadden Sea.
Estuarine, Coastal and Shelf Science, Vol. 54, pp.737-
745.
Aubrey, D. G., 1979. Seasonal patterns of onshore-offshore
sediment movement. J. Geophys. Res., 84, pp.6347-6354.
Bonnin, J., Raaphorst, W. V., Brummer, G. J., Haren, H. V.
and Malschaert, H., 2002. Intense mid-slope
resuspension of particulate matter in the Faeroe-
Shetland Channel: short-term deployment of near-bottom
sediment traps. Deep-Sea Research I, Vol. 49, pp.1485-
1505.
Carter, G. S. and Gregg, M. C., 2002. Intense, variable
mixing near the head of Monterey Submarine Canyon.
American Meteorological Society, pp. 3145-3165.
Chow, J., Lee, J. S., Liu, C. S., Lee, B. D. and Watkins
J. S., 2001. A submarine canyon as the cause of a mud
volcano ─ Liuchieuyu Island in Taiwan. Marine
geology, Vol. 176, pp.55-63.
Clarke, D. J. and Eliot, I. G.., 1983. Onshore-offshore
pattern of sediment exchange in the littoral zone of a
sand beach. J. Geol. Soc. Aust., 30, pp.341-351.
Curran, K. J., Hill, P. S. and Milligan, T. G., 2002. Fine-
grained suspended sediment dynamics in the Eel River
flood plume. Continental Shelf Research I, Vol. 22,
pp.2537-2550.
Denman, K. L. and Freeland, H. J., 1982. Systematic
variations in inshore bathymetry. J. Geol., 85, pp.
129-141.
Dolan, R., Hayden, B. P. and Felder, W., 1977. A
topographically controlled upwelling center off
southern Vancouver Island. Journal of Marine Research,
Vol. 40, No. 4, pp. 1069-1093
Drake, D. E., Eganhouse, R. and McArthur, W., 2002.
Physical and chemical effects of grain aggregates on
the Palos Verdes margin, southern California.
Continental Shelf Research I, Vol. 22, pp.967-986.
Fugate, D. C., and Friedrichs, C. D., 2002. Determining
concentration and fall velocity of estuarine particle
population using ADV, OBS and LISST. Continental Shelf
Research I, Vol. 22, pp.1867-1886.
Gartner, J. W., Chenf, R. T., Wang, P. F. and Richter, K.,
2001. Laboratory and field evaluations of the LISST-
100 instrument for suspended particle size
determinations. Marine Geology, Vol. 175, pp.199-219.
Gibbs, R. J., Mathews, M. D., Link, D. A., 1971. The
relationship between sphere size and settling
velocity. Journal of Sedimentary Petrology, Vol. 41,
pp.7-18.
Harris, C. K., Butman, B. and Traykovski, P., 2003. Winter-
time circulation and sediment transport in th e Hudson
Shelf Vally. Continental Shelf Research I, Vol. 23,
pp.801-802.
Hill, P. S., Milligan, T. G. and Geyer, W. R., 2000.
Control on effective settling velocity of suspended
sediment in the Eel River flood plume. Continental
Shelf Research, Vol. 20, pp.2095-2111.
Hill, P. S., Sherwood, C. R., Sternberg, R. W. and Nowell,
A. R. M., 1994. In situ measurements of particle
settling velocity on the northern California
continental shelf. Continental Shelf Research I, Vol.
14, pp.1123-1137.
Hill, P. S., and Voulgaris, G. and Trowbridge, J. H.,
2001. Controls on floc size in a continental shelf
bottom boundary layer. Journal of Geophysical
Research, Vol. 106, pp.9543-9549.
Hill, P. S., Syviski, J. P., Cowan, E. A. and Powell, R.
D., 1998. In situ observations of floc settling
velocities in Glacier Bay, Alaska. Marine Geology,
Vol. 145, pp.85-94.
Hotchkiss, F. S. and Wunsch,, C., 1982. Internal waves in
Hudson Canyon with possible geological implications.
Deep-sea Research, Vol. 29, pp. 415-442.
Huang, Y. and Liu, J. T., 2005. The Identy of Suspended
Partilces in the Coastal Water: A Multidisciplinary
approach. 5th International Conference on Coastal
Dynamics.
Hung, J.-J. and C. P. Shy, 1995. Speciation of dissolved
Se in the Kaoping and Erhjen rivers and estuaries,
southwestern Taiwan. Estuaries, Vol. 18, pp.234-240.
Inman, D. L., Nordstrom, C. E. and Flick R. E., 1976.
Current in submarine canyon: An air-sea-land
interaction. Ann. Rev. Fluid Mech., Vol. 8, pp.275-310.
Lewis, K. B. and Barnes, P. M., 1999. Kaikoura Canyon, New
Zealand: active conduit from near-shore sediment zones
to trench-axis channel. Marine Geology, 162, 39-69.
Liu, C. S., Huang, I. L. and Teng, L. S., 1997. Structural
features off southwestern Taiwan. Marine Geology, Vol.
137, pp.305-319.
Liu, J. T., Chao, S.-Y., Hsu, R. T., 1999. The influence
of suspended sediments on the plume of a small
mountainous river. Journal of Coastal Research, Vol.
15, pp.1002-1010.
Liu, J. T., Liu, K. J. and Huang, J. C., 2002. The effect
of a submarine canyon on the river sediment dispersal
and inner shelf sediment movements in southern Taiwan.
Marine Geology, Vol. 181, pp.357-386.
Liu, J. T., Liu, and Lin, H. L., 2004. Sediment dynamics
in a submarine canyon: a case of river interaction.
Marine Geology, Vol. 207, pp.55-81.
Mikkelsen, O. A. and Pejrup, M., 2000. In situ particle
size spectra and density of particle aggregates in a
dredging plume. Marine Geology, Vol. 170, pp.443-459.
Mikkelsen, O. A. and Pejrup, M., 2001. The use of a LISST-
100 laser particle sizer for in-situ estimates of floc
size, density and settling velocity. Geo-Marine
Letters, 181, pp. 215-234.
Monaco, A., Courp, T., Heussner, S., Carbonnw, J., Fowler,
S. W., and Deniaux, B., 1990. Seasonality and
composition of particlate fluxes during ECOMARGE-I,
western Gulf of Lions. Continental Shelf Research I,
Vol. 10, pp.959-987.
Ogston, A. S., Guerra, J. V. and Strenberg, R. W., 2004.
Interannual variability of nearbed sediment flux on
the Eel River shelf, northern California. Continental
Shelf Research I, Vol. 24, pp.117-136.
Puig, P., Palanques, A., Guill
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code