Responsive image
博碩士論文 etd-0715106-121212 詳細資訊
Title page for etd-0715106-121212
論文名稱
Title
不同端狀結構對增進塑膠光纖耦光效率之研究
Enhancement of Coupling Efficiency of Plastic Optical Fibers with Different End Shapes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
145
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-06-28
繳交日期
Date of Submission
2006-07-15
關鍵字
Keywords
發光二極體、耦光效率、錐狀端面、塑膠光纖、光纖透鏡
Coupling efficiency, fiber lens, Light emitting diode, Plastic optical fiber, taper
統計
Statistics
本論文已被瀏覽 5736 次,被下載 22
The thesis/dissertation has been browsed 5736 times, has been downloaded 22 times.
中文摘要
近年來,由於塑膠光纖傳輸損耗不斷改善,加上其具備機械性質強韌與低成本的好處,在許多應用上已取代傳統電纜和玻璃光纖。
本研究提出三種不同塑膠光纖端面形狀,並探討其對塑膠光纖與發光二極體間光耦合效率的影響,方法上,實驗與光學追跡模擬同時進行,實驗結果印證所建構之光學追跡模式的可行性。
文中首先分析球型光纖透鏡對塑膠光纖耦合效率的影響,採用EPO-TEK 353ND 環氧化樹脂當作透鏡材料,結果顯示,球型透鏡可以有效改善光耦合效率。另一種由球型光纖透鏡衍生而來的端面圓化式光纖透鏡也於文中提出,結果不但證明其具有與球型光纖透鏡一樣的耦光效果,還具備成型容易與安裝方便的好處。文中還採用另一種反射式光纖端面,為平錐式光纖端面,此種設計,藉由發生於錐緣的內全反射,改變入射光路徑以提升光耦合效率,實驗與理論結果同時證明反射式端面能更有效提升光耦合效率。
藉由光線追跡模組,不同類型塑膠光纖也於文中做探討,結果顯示光纖與光源發射面積之相對尺寸為影響光耦合效率增加比例最重要因素。
Abstract
The fiber-optics communication device with a plastic optical fiber (POF) has become a technology of increasing interests. The attenuation of commercial available POF has been improved to tens of decibels per kilometer. Due to its flexibility and high alignment efficiency, it has been widely used in many areas.
In this study, different end shapes of POF have been proposed to increase the coupling efficiency of a POF from a surface emitting LED. Both the experiments and a ray tracing simulation are performed to investigate the coupling scheme. Experimental results also illustrate the feasibility of using ray tracing model in POF end shapes design.
The effect of ball fiber lens on coupling efficiency is studied first. Lens material is EPO-TEK 353ND two parts epoxy. The result indicates that the ball fiber lens can improve the coupling efficiency significantly. A more impact end shape modified from the ball fiber lens is proposed in this study, i.e. a thin tip-rounded fiber lens. Numerical and experimental results show the tip can work as good as a ball fiber lens does. A reflection-styled end shape has also been proposed in this thesis, i.e. a taper-ended POF. In this design, the taper edge serves as a reflector to bend the rays incident on it by total internal reflection. The maximum efficiency achieves a great improvement from the previous design.
Further study on the various fiber types with different sizes and numerical apertures have also been studied by the ray tracing model.
目次 Table of Contents
Contents ---------------------------------------------------------------------
i
List of Figures --------------------------------------------------------------
iv
List of Tables ---------------------------------------------------------------
ix
Nomenclature ---------------------------------------------------------------
x
List of Abbreviations ------------------------------------------------------
xiii
摘要 -------------------------------------------------------------------------
xiv
Abstract ----------------------------------------------------------------------
xv
Chapter 1 Introduction -----------------------------------------------------
1
1-1 Evolutions and Applications of Optical Communication Sys-
tems with Plastic Optical Fibers (POF) --------------------------
1
1-2 Methods for Increasing Coupling Power of Optical Fibers ---
2
1-3 Motivations and Methods -----------------------------------------
4
1-4 Contents --------------------------------------------------------------
6
Chapter 2 The Simulation Model of LED-POF Optical Communic-
ation System ----------------------------------------------------
7
2-1 Optical Communication System with LED and POF Devices
-------------------------------------------------------------------------
7
2-2 LED Optical Characters -------------------------------------------
7
2-3 POF Optical Properties --------------------------------------------
9
2-4 The Simulation Model in Software Zemax ---------------------
10
2-4-1 LED Model in Software Zemax -----------------------------
11
2-4-2 POF Model in Software Zemax -----------------------------
13
Chapter 3 The Effects of Different End Shapes of POF on Butt Co-
upling Efficiency -----------------------------------------------
24
3-1 Equipments and Experimental Setups ---------------------------
24
3-2 Flat-ended POF -----------------------------------------------------
26
3-2-1 Formation of Flat-ended POFs ------------------------------
26
3-2-2 Flat-ended POF Analysis and Butt Coupling Efficiency
--------------------------------------------------------------

27
3-3 Ball-lensed POF ----------------------------------------------------
30
3-3-1 Material Properties of EPO-TEK 353ND ------------------
30
3-3-2 Formation of Ball-lensed POFs -----------------------------
31
3-3-3 Ball-lensed POF Analysis and Butt Coupling Efficiency
--------------------------------------------------------------

32
3-4 Tip-rounded POF ---------------------------------------------------
35
3-4-1 Formation of Tip-rounded POFs ----------------------------
35
3-4-2 Tip-rounded POF Analysis and Butt Coupling Efficienc-
y -----------------------------------------------------------

36
3-5 Taper-ended POF ---------------------------------------------------
39
3-5-1 Formation of Taper-ended POFs ----------------------------
40
3-5-1-1 Chemical Etching processes of POFs -----------------
40
3-5-1-2 Hot-drawing processes of POFs -----------------------
43
3-5-2 Taper-ended POF Analysis and Butt Coupling Efficienc-
y -----------------------------------------------------------

44
3-6 Summary -------------------------------------------------------------
46
Chapter 4 Parameter analyses and Discussions ------------------------
103
4-1 Maximum Transmission Distance --------------------------------
104
4-2 Sensitivity of Coupling Efficiency to Misalignments ---------
105
Chapter 5 Conclusions -----------------------------------------------------
111
5-1 Summary -------------------------------------------------------------
111
5-2 Further Works -------------------------------------------------------
112
5-2-1 Bandwidth and Attenuation of POFs -----------------------
112
5-2-2 Higher Level Devices ----------------------------------------
113
Reference --------------------------------------------------------------------
114
Appendix --------------------------------------------------------------------
117
A-1 Tunneling Rays in a Cylindrical Optical Waveguide ---------
117
A-2 Attenuation of Tunneling Rays -----------------------------------
118
A-3 Tunneling Rays in this Work -------------------------------------
119
A-3-1 Definition of a Fractional Value ---------------------
120
A-3-2 Set a Reference Position -------------------------------------
121
A-3-3 Experimental Results ----------------------------------------
122
參考文獻 References
[1] Schnitzer, P., Grabherr, M., Jäger, R., Mederer, F., Michalzik, R.,
Wiedenmann, D., and Ebeling, K. J., 1999, “GaAs VECEL’s at λ=780
and 835nm for Short-Distance 2.5-Gb/s Plastic Optical Fiber Data
Links,“ Photonic Technology Letters, 11, (7), pp. 767-769.
[2] Ouchi, T., Imada, A., Sato, T., and Sakata, h., 2002, “Direct Coupling
of VECELs to Plastic Optical Fibers Using Guide Hodes Patterned in a
Thick Photoresist,” Photonic Technology Letters, 14, (3), pp. 263-265.
[3] Kibler, T., Poferl, S., Böck, G., Huber, H. P, and Zeeb, E., 2004,
“Optical Data Buses for Automotive Applications,” Journal of Lightwave
Technology, 22, (9), pp.2184-2198.
[4] Pessa, M., Guina, M., Dumitrescu, M., Hirvonen, I., Saarinen, M.,
Toikkanen, L., and Xiang, N., 2002, “Resonant Cavity Light Emitting
Diode for Polymer Optical Fibre System,” Semiconductor Science and
Technology, 19, pp. R1-R9.
[5] Lambkin, J. D., McCormack, T., Calvert, T., Moriarty, T., 2002,
“Advance Emitters for Plastic Optical Fibre,” 2002 ICPOF.
[6] Shaw, A. J., Bradley, A. L., Donegan, J. F., and Lunney, J. G., 2004,
“GaN Resonant Cavity Light-Emitting Diodes for Plastic Optical Fiber
Applications,” Photonic Technology Letters, 16, (9), pp. 2006-2008.
[7] Lambkin, J. D., McGarvey, B., O’Gorman, M., Moriarty, T., 2005,
“RCLEDs for MOST and IDB 1394 Automotive Applications,” 2005
ICPOF.
[8] Dutta, A. K., Suzuki, A., Kurihara, K., Miyasaka, F., Hotta, H., and
Sugita, K., 1995, ” High-Brightness, AlGaInP-Based Visible
Light-Emitting Diode for Efficient Coupling with POF,” Photonic
Technology Letters, 7, (10), pp. 1134-1136.
[9] Akhter, M., Masskant, P., Roycroft, B., Corbett, B., Mierry, P.,
Beaumont, B., and Panzer, K., 2002, “200Mbit/s data transmission
through 100m of plastic optical fiber with nitride LEDs,” Electronic
Letters, 38, (23), pp. 1457-1458.
[10] Shealy, D. L., and Berg, H. M., 1983, “Simulation of Optical
Coupling from Sureface Emitting LEDs,” Applied Optics, 22, (11), pp.
1722-1730.
[11] Park, E. H., Kim, M. J., and Kwon, Y. S., 1999, “Microlens forEfficient Coupling between LED and Optical Fiber,” Photonic
Technology Letters, 11, (4), pp. 439-441.
[12] Lazarrus, M. J., 2001, “Optical-Bulb Lens Antenna for Efficient
Plastic Fiber Coupling,” Microwave and Optical Technology Letters, 28,
(2), pp. 141-143.
[13] Lazarrus, M. J., Ellarby, V., and Campbell, D., 2002, “Enhanced
Coupling of Light Emitters to Plastic Optical Fiber with the use of
Bulb-Lens Antenna System,” Microwave and Optical Technology Letters,
33, (1), pp. 6-9.
[14] Cohen, L. G., and Schneider, M. V., 1974, “Microlenses for Coupling
Junction Lasers to Optical Fibers,“ Applied Optics, 13, (1), pp. 89-94.
[15] Uematsu, Y., Ozeni, T., and Unno, Y., 1979, “Efficient Power
Coupling between an MH LED and a Taper-Ended multimode Fiber,”
Journal of Quantum Electronics, QE-15, (2), pp. 86-91.
[16] Sakata, H., and Imada, A., 2002, “Lensed Plastic Optical Fiber
Employing Concave End Filled with High-Index Resin,” Journal of
Lightwave Technology, 20, (4), pp. 638-642.
[17] Toshiba Semiconductor Co., TOSLINK Fiber-Optic Devices,
http://www.semicon.toshiba.co.jp.
[18] Mitsubishi Rayon Co. Ltd., Super Eska and ESKAMEGA POFs,
http://www.pofeska.com.
[19] Snyder, A. W., 1974, “Leaky-ray Theory of Optical Waveguides of
Circular Cross Section,” Appl. Phys., 4, (4), pp. 273-298.
[20] Snyder, A. W., and Pask, C., 1975, “Optical Fiber: Spatial Transient
and Steady State,” Opt. Commun., 15, (2), pp. 314-316.
[21] Snyder, A. W., and Love, J. D., 1991, Optical Waveguide Theory,
Chapman & Hall, NY, Chap. 8.
[22] Lee, S. J., 2001, “Analysis of Light-emitting Diodes by Monte Carlo
Photon Simulation,” Applied Optics, 40, (9), pp. 1427~1437.
[23] Keiser, G., 2000, Optical Fiber Communications, McGraw-Hill,
New York, 2000, pp.207-208.
[24] Hornak, L. A., 1992, Polymers for Lightwave and Integrated Optics.
Technology and Applications, Dekker, New York, pp. 41-p43.
[25] Epoxy Technology, INC., EPO-TEK 353ND,
http://www.epotek.com.
[26] Smith, F. G., and King, T. A., Optics and Phonics an Introduction,
John Wiley & Sons, Inc., NY, pp. 286-287.
[27] SCHOTT Group, 2005, “Transmittance of Optical Glass,” TechnicalInformation No. TIE-35, Schott AG., Heidenberg Germany.
[28] Merchant, D. F., Scully, P. J., and Schmitt, N. F., 1999, “Chemical
Tapering of Polymer Optical Fibre,” Sensors and Actuators, 76, pp.
365-371.
[29] Takahashi, S., and Ichimura, K., 1991, “Time Domain Measurements
of Launching-Condition-Dependent Bandwidth of All-plastic Optical
Fibers,” Electr. Lett., 27, pp. 217-219.
[30] Yoshimura, T., and Koyamada, Y., 2005, “Influence of Tunneling
Rays to Baseband Frequency Response of Step-Index Plastic Optical
Fibers,” Electronics and Communications in Japan, Part 1, 88, (8), pp.
12-17.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.227.190.93
論文開放下載的時間是 校外不公開

Your IP address is 18.227.190.93
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code