Responsive image
博碩士論文 etd-0715106-205506 詳細資訊
Title page for etd-0715106-205506
論文名稱
Title
二維與三維光子晶體光纖之結構設計與特性量測
Design and Characterization of 2D and 3D Photonic Crystal Fibers
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
89
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-06-29
繳交日期
Date of Submission
2006-07-15
關鍵字
Keywords
色散、光子能隙、光子晶體光纖、光子晶體、三維光子晶體光纖
photonic bandgap, dispersion, photonic crystals, photonic crystal fiber, 3-D photonic crystal fiber
統計
Statistics
本論文已被瀏覽 5645 次,被下載 0
The thesis/dissertation has been browsed 5645 times, has been downloaded 0 times.
中文摘要
由於光通訊的快速成長,高光學品質的光纖元件變成技術研發的重點。而由週期性空氣孔洞所組成的光子晶體光纖,因為其獨特的特性,如全光子能隙、零色散、無截止單模態、雙折射等,近年來也越來越受到重視。

所以本論文著重於探討光子晶體光纖的結構,對於其光子能帶結構與傳播特性的影響。此外,我們也提出另一創新概念,三維光子晶體光纖。並且首度利用LHPG生長方法生長光子晶體光纖,再進行光學量測。

在本論文中,我們利用RSoft模擬軟體研究二維、三維光子晶體光纖的光學特性。由模擬的結果可知,對於以Pyrex為材料,具有均勻空氣孔洞的二維光子晶體光纖而言,以0.7
Abstract
Because of the fast growing in communications, the quality of signal transmission in optical fiber becomes very important. Concurrently, photonic crystal fiber (PCF) consisting of a central defect region surrounded by multiple air holes is attracting much attention in recent years because of its unique properties, such as full photonic bandgaps, wideband, dispersion, endlessly single mode and birefringence, etc.

This thesis is mainly focused on the development of the photonic band structures and propagation properties of PCF. And we propose a novel ideal about 3-D PCF, which can be fabricated using the laser heated pedestal growth (LHPG) method.

In the thesis, we study the optical properties of 2-D and 3-D PCFs made by Pyrex using the software RSoft. From the result of simulation, the 2-D out-of-plane bandgaps for a hexagonal close packed structure appear between the air filling fraction range from 0.30 to 0.88 for the incident light of wavelength range from 0.7 to 1
目次 Table of Contents
中文摘要 i
英文摘要 ii
目錄 iii
圖目錄 v
表目錄 x

第一章 緒論 1
1.1 簡介 1
1.2 研究動機 2
1.3 論文架構 3
第二章 光子晶體光纖之原理及應用 5
第三章 數值計算方法理論 12
3.1 前言 12
3.2 平面波展開法 12
3.3 有限差分時域法 16
3.4 有限元素法 22
第四章 光子晶體光纖結構設計及其模擬結果與分析 29
4.1 二維光子晶體光纖之結構設計 31
4.2 二維光子晶體光纖之模擬結果與分析 31
4.2.1 均勻空氣孔洞的二維光子晶體光纖之入平面
光子晶體模擬 32
4.2.2 均勻空氣孔洞的二維光子晶體光纖之出平面
光子晶體模擬 38
4.2.3 非均勻空氣孔洞的二維光子晶體光纖之出平
面光子晶體模擬 45
4.3 三維光子晶體光纖之結構設計 46
4.4 三維光子晶體光纖之模擬結果與分析 48
第五章 實驗量測結果與討論 53
5.1 LHPG生長法生長光子晶體光纖 53
5.2 光子晶體光纖之光學量測 64
第六章 結論 67

參考文獻 70
中英對照表 74
參考文獻 References
[1.1] E. Yablonovitch, “Inhibited spontaneous emission
in solid-state physics and electronics,” Phys.
Rev. Lett. 58, 2059 (1987).
[1.2] Sajeev, “Strong localization of photons in
certain disordered dielectric superlattices,”
Phys. Rev. Lett. 58, 2486 (1987).
[1.3] J. C. Knight, T. A. Birks, P. St. J. Russell, and
D. M. Atkin, “All-silica single-mode optical
fiber with photonic crystal cladding,” Opt.
Lett. 21, 1547 (1996).
[2.1] Russell, “Photonic crystal fiber,” Science 299,
358 (2003).
[2.2] T. A. Birks, J. C. Knight, and P. St. J. Russell,
“Endlessly single-mode photonic crystal
fiber,” Opt. Lett. 22 , 961 (1997).
[2.3] J. C. Knight, J. Broeng, T. A. Birks, and P. St.
J. Russell, “Photonic band gap guidance in
optical fibers,” Science 282, 1476 (1998).
[2.4] R. F. Cregan, B. J. Mangan, J. C. Knight, T. A.
Birks, P. St. J. Russell, P. J. Roberts, and D.
C. Allan, “Single-mode photonic band gap
guidance of light in air,” Science 285, 1537
(1999).
[2.5] C. Knight, “Photonic crystal fibres,” Nature
424, 847 (2003).
[2.6] E. A. Saleh and M. C. Teich, “Fundamentals of
photonics,” 279 (1991).
[2.7] A. Ortigosa-Blanch, et al, “Highly birefringent
photonic crystal fibers,”Opt. Lett. 25, 1325
(2000).
[2.8] C. A. Burrus and J. Stone, “Single–crystal
fiber optical devices: A Nd:YAG fiber laser,”
Appl. Phys. Lett. 26, 318 (1975).
[3.1] K. M. Ho, C. T. Chan, and C. M. Soukoulis,
“Existence of a Photonic gap in periodic
dielectric structure,” Phys. Rev. Lett. 65, 3152
(1990).
[3.2] R. D. Meade, A. M. Rappe. K. D. Brornmer, J. D.
Joannopoulops, and O. L. Alerhand, “Accurate
theoretical analysis of photonic band-gap
material,” Phys. Rev. B, 48, 8434 (1993).
[3.3] M. Qiu, “Analysis of guided modes in photonic
crystal fibers using the finite-difference time-
domain method,”Microwave and Opt. Tech. Lett.
30, 327 (2001).
[3.4] G. E. Town and J. T. Lizier, “Tapered holey
fibers for spot size and numerical aperture
conversion,” Proc. CLEO’2001, Paper CTuAA3,
p.261.
[3.5] Z. Zhu and T. G. Brown, “Full-vectorial finite-
difference analysis of microstructured optical
fibers,”, Opt. Exp. 10, 853 (2002).
[3.6] F. Brechet, J. MArcou, D. Pagnoux, and P. Roy,
“Complete analysis of the characteristics of
propagation into photonic crystal fibers, by the
finite element method,”, Opt. Fiber Technology,
6, 181 (2000).
[3.7] K. S. Yee, “Numerical solution of initial
boundary value problems involving Maxwell’s
equations in isotropic media,” IEEE Trans.
Anten. Prop. 14, 302 (1966).
[3.8] J. B. Berenger, “A perfectly matched layer for
absorption of electromagnetic waves, ” J.
Comput. Phys. 114, 185 (1994).
[3.9] Z. S. Sacks, D. M. Kingsland, R. Lee, and J. F.
Lee, “A perfectly matched anisotropic absorber
for use as an absorbing boundary condition,”
IEEE Trans. Anten. Prop. 43, 1460 (1995).
[3.10] S. D. Gedey, “An anisotropic perfectly matched
layer-absorbing medium for the truncation of FDTD
lattices,” IEEE Trans. Anten. Prop. 44, 1630
(1996).
[4.1] T. Birks, J. Knight, and P. Russell, D. Atkin,
and T. Shepherd,“Full 2-d photonic bandgaps in
silica/air structure,” IEE Electron. Lett. 31,
1941 (1995).
[4.2] T. Krauss, R. De La Rue, and S. Brand,“Two-
dimensional photonic-bandgap structures operating
at near-infrared wavelength,” Nature 383, 699
(1996).
[4.3] H.- B. Lin, R. Tonucci, and A. Campillo,
“Observation of two-dimensional photonic band
behavior in the visible,” Appl. Phys. Lett. 68,
1341 (1994).
[4.4] T. Søndergaard, J. Broeng, A. Bjarklev, K. Dridi,
and S. E. Barkou, “Suppression of spontaneous
emission for a two-dimensional honeycomb photonic
bandgap structure estimated using a new effective-
index model,” IEEE J. Quantum Electron. 34, 2308
(1998).
[4.5] A. Maradudin and A. McGurn, “Out of plane
propagation of electromagnetic wave in a two-
dimensional periodic dielectric medium,” J. Mod.
Opt. 41, 275 (1994).
[4.6] X. Feng and Y. Arakawa, “Off-plane angle
dependence of photonic band gap in a two-
dimensional photonic crystal,” IEEE J. Quantum
Electron. 32, 535 (1996).
[4.7] C. R. Giles, “Lightwave applications of fiber
Bragg grating,” J. Lightwave Technol. 15, 1391
(1997).
[4.8] A. Sennaroglu, “Analysis and optimization of
lifetime thermal loading in continuous-wave Cr4+-
doped solid-state lasers,” J. Opt. Soc. Am. B,
11, 1578 (2001).
[4.9] Hergen Eilers, William M. Dennis, William M. Yen,
Stefan Kuck, Klaus Peterman, Gunter Huber, and W.
Jia, “Performance of a Cr:YAG laser,” IEEE J.
Quantum Electron. 29, 2508 (1993).
[4.10] S. Kuck, K. Petermann, and G. Huber,
“Spectroscopic investigation of the Cr4+-center
in YAG,” OSA Proceedings on Advanced Solid-State
Lasers, 10, 92 (1991).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.218.38.125
論文開放下載的時間是 校外不公開

Your IP address is 18.218.38.125
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code