Responsive image
博碩士論文 etd-0715108-124010 詳細資訊
Title page for etd-0715108-124010
論文名稱
Title
探討鉀離子通道結合蛋白參與細胞膜結合之結構區域
Study the functional region involves in targeting of KChIP1 to membrane
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
49
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-07-09
繳交日期
Date of Submission
2008-07-15
關鍵字
Keywords
鉀離子通道結合蛋白
NCS protein, KChIP1, phosphatidylserine
統計
Statistics
本論文已被瀏覽 5655 次,被下載 2017
The thesis/dissertation has been browsed 5655 times, has been downloaded 2017 times.
中文摘要
Potassium channel-interacting protein 1 (KChIP1) 為一調控 A-type potassium channels (Kv4) 功能並增加其細胞表面表現量的neuron calcium sensor (NCS) proteins。先前研究認為 KChIP1 可透過 N 端 myristoyl group 結合至細胞膜,但卻不夠至穩定蛋白質與膜之間的結合,因此本論文將探討是否有其他結構區域會影響 KChIP1 與細胞膜之結合。 首先以 hydropathy profile 分析得知第三及第四個 EF-hands 為較疏水的區域。 在去除此區域後不僅造成 Trp 微環境結構的改變,也明顯減少 KChIP1 之疏水性,但其二級結構仍可維持 α-helix 構型。 而 truncated KChIP1 也對酯質 (lipid) 之結合能力有顯著下降並因此影響其在細胞內的 membrane localization,推測 EF-hands 3 及 4 具有增進 KChIP1 與細胞膜結合的能力。 此外,truncated KChIP1 也喪失對 phosphatidylserine 結合之特異性並降低兩者之間的親和力。 根據 FTIR spectra 結果顯示隨著酯質 large unilamellar vesicles 中 phosphatidylserine 比例上升,結合上酯質之 KChIP1 其 α-helix 的結構也有隨之改變的趨勢。 且從蛋白質聚合反應得知,phosphatidylserine 與 Kv4 會促進 KChIP1 形成 tetramer 來聚集在酯質上,另外與 Kv4 結合會增加 KChIP1 與酯質結合的能力。 綜合上述結果得知,EF-hands 3 及 4 motifs 影響 KChIP1 與細胞膜結合時之親和力及特異性,並在 KChIP1 展現生理功能上可能扮演重要的角色。
Abstract
Potassium channel-interacting protein 1 (KChIP1), a Ca<sup>2+</sup> sensor protein, regulates the function of A-type Kv4 potassium channels and increases their cell surface expression. Myristoylation at the N-terminus of KChIP1 has been suggested to facilitate membrane-binding, but was not sufficient for stable membrane assaociation. The aim of the present study is to investigate whether EF-hand motifs of KChIP1 are crucial for membranal targeting in addition to the N-terminal myristoyl group, and how the membrane association of KChIP1 is influenced by lipid compositions. According to hydropathy profile, EF-hands 3 and 4 of KChIP1 showed highly hydrophobicity. After deleting EF-hands 3 and 4, the altered microenvironment of Trp residue and decreased hydrophobicity were found in truncated KChIP1, but it still maintained α-helix structure. Furthermore, truncated KChIP1 exhibited lower lipid-binding ability, affecting intracellular membrane localization and was almost diminished underlying increasing membrane permeability by digitonin in cells, suggesting that intact EF-hands 3 and 4 may be related to the anchorage of KChIP1 on cellular membrane. KChIP1, but not mutant, specifically bound with phosphatidylserine by lipid binding assay and the FTIR spectra showed the change of α-helix structure by binding lipid large unilamellar vesicles was dependent on phosphatidylserine. Either phosphatidylserine or potassium channels enhanced KChIP1 to form tetramer for targeting to phospholipids by using chemical cross-linking assay. Taken together, our data highly suggest that intact of EF-hands 3 and 4 should structurally and functionally involve in fulfilling the physiological activity of KChIP1.
目次 Table of Contents
目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
中文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
英文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
縮寫表 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
緒論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
材料 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
實驗方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
結果 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
討論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
圖表 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
參考文獻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
參考文獻 References
Ames, J. B., Ishima, R., Tanaka, T., Gordon, J. I., Stryer, L. and Ikura, M. (1997) Molecular mechanics of calcium-myristoyl switches. Nature 389, 198-202.

An, W. F., Bowlby, M. R., Betty, M., Cao, J., Ling, H. P., Mendoza, G., Hinson, J. W., Mattsson, K. I., Strassle, B. W., Trimmer, J. S. and Rhodes, K. J. (2000) Modulation of A-type potassium channels by a family of calcium sensors. Nature 403, 553-556.

Bahring, R., Dannenberg, J., Peters, H. C., Leicher, T., Pongs, O. and Isbrandt, D. (2001) Conserved Kv4 N-terminal domain critical for effects of Kv channel interacting protein 2.2. on channel expression and gating. J. Biol. Chem. 276, 23888–23894.

Braunewell, K. H. and Gundelfinger, E. D. (1999) Intracellular neuronal calcium sensor proteins: a family of EF-hand calcium-binding proteins in search of a function. Cell Tissue Res. 295, 1-12.

Burgoyne, R. D. and Weiss, J. L. (2001) The neuronal calcium sensor family of Ca2+-binding proteins. Biochem. J. 353, 1-12.

Chang, L. S., Chen, C. Y. and Wu, T. T. (2003) Functional implication with the metal-binding properties of KChIP1. Biochem. Biophys. Res. Commun. 311, 258–263.

Cui, Y. Y., Liang, P. and Wang, K. W. (2008) Enhanced Trafficking of Tetrameric Kv4.3 Channels by KChIP1 Clamping. Neurochem. Res. Online first.

Decher, N., Uyguner, O., Scherer, C. R., Karaman, B., Yuksel-Apak, M., Busch, A. E., Steinmeyer, K. and Wollnik, B. (2001) hKChIP2 is a functional modifier of hKv4.3 potassium channels : cloning and expression of a short hKChIP2 splice variant. Cardiovasc. Res. 52, 255-264.

Deschenes, I., DiSilvestre, D., Juang, G. J., Wu, R. C., An, W. F. and Tomaselli, G. F. (2002) Regulation of Kv4.3 current by KChIP2 splice variants: a component of native cardiac I(to)? Circulation 106, 423-429.

Desmeules, P., Penney, S. E., Desbat, B. and Salesse, C. (2007) Determination of the contribution of the myristoyl group and hydrophobic amino acids of recoverin on its dynamics of binding to lipid monolayers. Biophys. J. 93, 2069-2082.

Folch, J., Lees, M. and Sloane Stanley, G. H. (1957) A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497-509.

Flaherty, K. M., Zoulya, S., Stryer, L. and McKay, D. B. (1993) 3-Dimensional structure of recoverin, a calcium sensor in vision. Cell 75, 709–716.

Han, W., Nattel, S., Noguchi, T. and Shrier, A. (2006) C-terminal domain of Kv4.2 and associated KChIP2 interactions regulate functional expression and gating of Kv4.2. J. Biol. Chem. 281, 27134-27144.

Holmqvist, M. H., Cao, J., Knoppers, M. H., Jurman, M. E., Distefano, P. S., Rhodes, K. J., Xie, Y. and An, W. F. (2001) Kinetic modulation of Kv4-mediated A-current by arachidonic acid is dependent on potassium channel interacting proteins. J. Neurosci. 21, 4154-4161.

Jerng, H. H., Pfaffinger, P. J. and Covarrubias, M. (2004) Molecular physiology and modulation of somatodendritic A-type potassium channels. Mol. Cell. Neurosci. 27, 343-369.

Kyte, J. and Doolittle, R. F. (1982) A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105-132.

Ladant, D. (1995) Calcium and membrane binding properties of bovine neurocalcin delta expressed in Escherichia coli. J. Biol. Chem. 270, 3179-3185.

Lin, L., Braunewell, K. H., Gundelfinger, E. D. and Anand, R. (2002) Functional analysis of calcium-binding EF-hand motifs of visinin-like protein-1. Biochem. Biophy.s Res. Commun. 296, 827-832.

Long, S. B., Campbell, E. B. and MacKinnon, R. (2005) Voltage sensor of Kv1.2: structural basis of electromechanical coupling. Science 309, 903–908.

Morohashi, Y., Hatano, N., Ohya, S., Takikawa, R., Watabiki, T., Takasugi, N., Imaizumi, Y., Tomita, T. and Iwatsubo, T. (2002) Molecular cloning and characterisation of CALP/kChIP4, a novel EF-hand protein interacting with presenilin 2 and voltage-gated potassium channel subunit Kv4. J. Biol. Chem. 277, 14965–14975.

O’Callaghan, D. W. and Burgoyne, R. D. (2003a) Role of myristoylation in the intracellular targeting of neuronal calcium sensor (NCS) proteins. Biochem. Soc. Trans. 31, 963–965.

O’Callaghan, D. W., Hasdemir, B., Leighton, M. and Burgoyne, R. D. (2003b) Residues within the myristoylation motif determine intracellular targeting of the neuronal Ca2+ sensor protein KChIP1 to post-ER transport vesicles and traffic of Kv4 K+ channels. J. Cell Sci. 116, 4833–4845.

O'Callaghan, D. W., Haynes, L. P. and Burgoyne, R. D. (2005) High-affinity interaction of the N-terminal myristoylation motif of the neuronal calcium sensor protein hippocalcin with phosphatidylinositol 4,5-bisphosphate. Biochem. J. 391, 231-238.

Olshevskaya, E.V., Hughes, R.E., Hurley, J.B., and Dizhoor, A.M. (1997) Calcium binding, but not a calcium-myristoyl switch, controls the ability of guanylyl cyclase-activating protein GCAP-2 to regulate photoreceptor guanylyl cyclase. J. Biol. Chem. 272, 14327-14333.

Park, J. B., Kim, H. J., Ryu, P. D. and Moczydlowski, E. (2003) Effect of phosphatidylserine on unitary conductance and Ba2+ block of the BK Ca2+-activated K+ channel: re-examination of the surface charge hypothesis. J. Gen. Physiol. 121, 375-397.

Peshenko, I. V. and Dizhoor, A. M. (2007) Activation and inhibition of photoreceptor guanylyl cyclase by guanylyl cyclase activating protein 1 (GCAP-1): the functional role of Mg2+/Ca2+ exchange in EF-hand domains. J. Biol. Chem. 282, 21645-21652.

Pioletti, M., Findeisen, F., Hura, G. L. and Minor, D. L. Jr. (2006) Three- dimensional structure of the KChIP1-Kv4.3 T1 complex reveals a cross-shaped octamer. Nat. Struct. Mol. Biol. 13, 987-995.

Resh, M. D. (1999) Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim. Biophys. Acta. 1451, 1–16.

Scannevin, R. H., Wang, K., Jow, F., Megules, J., Kopsco, D. C., Edris, W., Carroll, K. C., Lu, Q., Xu, W., Xu, Z., Katz, A. H., Olland, S., Lin, L., Taylor, M., Stahl, M., Malakian, K., Somers, W., Mosyak, L., Bowlby, M. R., Chanda, P. and Rhodes, K. J. (2004) Two N-terminal domains of Kv4 K(+) channels regulate binding to and modulation by KChIP1. Neuron 41, 587-598.

Senin, I. I., Churumova, V. A., Philippov, P. P. and Koch, K. W. (2007) Membrane binding of the neuronal calcium sensor recoverin-modulatory role of the charged carboxy-terminus. BMC Biochem. 8, 24.

Spilker, C., Gundelfinger, E. D. and Braunewell, K. H. (2002b) Evidence for different functional properties of the neuronal calcium sensor proteins VILIP-1 and VILIP-3: from subcellular localization to cellular function. Biochim. Biophys. Acta. 1600, 118-127

Tanaka, T., Ames, J. B. Harvey, T. S., Stryer, L. and Ikura, M. (1995) Sequestration of the membrane targeting myristoyl group of recoverin in the calcium-free state. Nature 376, 444–447.

Wang, H., Yan, Y., Liu, Q., Huang, Y., Shen, Y., Chen, L., Chen, Y., Yang, Q., Hao, Q., Wang, K. and Chai, J. (2007) Structural basis for modulation of Kv4 K+ channels by auxiliary KChIP subunits. Nat. Neurosci. 10, 32-39.

Wang, K. (2008) Modulation by Clamping: Kv4 and KChIP Interactions. Neurochem. Res. Online first.

Xiong, H., Kovacs, I. and Zhang, Z. (2004) Differential distribution of KChIPs mRNAs in adult mouse brain Brain. Res. Mol. Brain. Res. 128, 103-111.

Xu, Y., Ramu, Y. and Lu, Z. (2008) Removal of phospho-head groups of membrane lipids immobilizes voltage sensors of K+ channels. Nature 451, 826-829.

Zhou, W., Qian, Y., Kunjilwar, K., Pfaffinger, P. J. and Choe, S. (2004) Structural insights into the functional interaction of KChIP1 with Shal-type K(+) channels. Neuron 41, 573-586.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code