Responsive image
博碩士論文 etd-0715108-145938 詳細資訊
Title page for etd-0715108-145938
Goniothalamin 誘導肝癌細胞株經由TP53-dependent 與-independent 途徑之細胞凋亡
Goniothalamin induces TP53-dependent and -independent apoptosis in hepatocellular carcinoma derived cells
Year, semester
Number of pages
Advisory Committee
Date of Exam
Date of Submission
HCC, apoptosis, Goniothalamin, Hep-3B, SK-Hep1, TP53
本論文已被瀏覽 5959 次,被下載 0
The thesis/dissertation has been browsed 5959 times, has been downloaded 0 times.
本實驗的主旨在於探討goniothalamin (GTN) 於肝癌細胞株中引發細胞凋亡之分子機制。自Goniothalamus amuyo(恆春哥納香) 純化之GTN被發現對於人類肝癌SK-Hep1和Hep-3B具有毒殺之效果。藉由於570 nm吸收光譜的MTT試驗得知GTN在72小時的IC50在SK-Hep1和Hep-3B分別為7.5, 17 mM,且可引發肝癌細胞內氧化壓力的累積與細胞的死亡,而GTN與氧化物抑制劑N-actylcysteine同時處理則可回復細胞的存活率,並藉由γ-H2AX foci 的形成推測GTN可導致DNA的雙股斷裂。在SK-Hep1細胞中GTN藉由調控CCND, CCNE1, RB1和E2F1蛋白質使細胞停留於細胞週期之G0/G1時期,而在Hep-3B細胞中則是調控CCNB1使細胞停留於G2/M時期。GTN在SK-Hep1所引發的細胞凋亡與磷脂醯絲氨酸外翻且包含了外來與內在之途徑,但是於Hep-3B中只有外來之途徑,在SK-Hep1細胞株中GTN 藉由引發和TP53調控之機制導致細胞凋亡與細胞週期中止,反之而在TP53/FAS突變之Hep-3B中則無 。更重要的是GTN可誘發無論是TP53正常或TP53/FAS 之肝癌細胞的細胞凋亡,此外GTN可引發SK-Hep1細胞中TP53調控p21WAF1/Cip1 表現與Hep-3B中p21WAF1/Cip1與p27Kip1的表現量上升。這些結果顯示GTN可藉由不同的分子機制導致肝癌細胞的細胞凋亡。
The objective was to study apoptotic effects and underlying molecular mechanisms of goniothalamin (GTN) in hepatocellular carcinoma (HCC)-derived cells. The GTN that isolated from Goniothalamus amuyon, was found to possess profound cytotoxic activities against human SK-Hep1 and Hep-3B cells in vitro. The cytotoxicity of GTN/cell viability was measured by MTT assay at 570-nm absorbance and the IC50 at 72 h were determined as 7.5, 17 mM in SK-Hep1 and Hep-3B respectively. The GTN induced cell death and accumulation of reactive oxygen species in HCC-derived cells. One reactive oxygen species inhibitor, N-actylcysteine, further restored cell viabilities post-GTN treatments. Formation of γ-H2AX foci suggested that GTN-induced DNA damages were double-strand breaks. The GTN arrested cell cycle at G0/G1 by regulation of CCND, CCNE1, RB1 and E2F1 proteins in SK-Hep1, and at G2/M by regulation of CCNB1 in Hep-3B cells. The GTN-induced apoptosis in HCC-derived cells were evidenced by phosphatidylserine externalization and involved both extrinsic and intrinsic pathways in SK-Hep1 cells, but only extrinsic pathway in Hep-3B cells. In SK-Hep1 cells, GTN induced apoptosis and cell cycle arrest through TP53-mediated pathway in contrast to that of TP53/FAS mutated Hep-3B cells. Importantly, GTN was able to induce apoptosis in both TP53 wild type and TP53/FAS mutated HCC-derived cells. On the other hand, GTN was able to induce TP53 and p21WAF1/Cip1 up-regulation in SK-Hep1 and Hep-3B cells and p27Kip1 up-regulation in Hep-3B cells. These results demonstrated that GTN induced apoptosis in HCC cells through distinct signaling pathways.
目次 Table of Contents
Chinese………………………………………………………... 2
English ...……………………………...………………….…… 3
Introduction…………………………………………..……………. 4
Materials and Methods…………………………………………… 15
Results………………………………………………..……..……... 23
Figures………………………………………..……………..... 31
Discussion...…………………………………………………...…... 47
References…………………………………………………………. 51
Appendix……………………………………………………..……. 57
參考文獻 References
1. B.W. Wattanapiromsakul Chatchai , and A.I.a.N.K. Puttachat Sangprapan, Goniothalamin, a cytotoxic compound, isolated from Goniothalamus macrophyllus (Blume) Hook. f. & Thomson var. macrophyllus Songklanakarin J. Sci. Technol. 27 (2005) 479-487.
2. A. Fatima, L.K. Kohn, J.E. Carvalho, and R.A. Pilli, Cytotoxic activity of (S)-goniothalamin and analogues against human cancer cells. Bioorg Med Chem 14 (2006) 622-31.
3. M.A. Mohd Ridzuan, U. Ruenruetai, A. Noor Rain, S. Khozirah, and I. Zakiah, Antimalarial properties of Goniothalamin in combination with chloroquine against Plasmodium yoelii and Plasmodium berghei growth in mice. Trop Biomed 23 (2006) 140-6.
4. M.A. Mosaddik, and M.E. Haque, Cytotoxicity and antimicrobial activity of goniothalamin isolated from Bryonopsis laciniosa. Phytother Res 17 (2003) 1155-7.
5. A.M. Ali, M.M. Mackeen, M. Hamid, Q.B. Aun, Y. Zauyah, H.L. Azimahtol, and K. Kawazu, Cytotoxicity and electron microscopy of cell death induced by goniothalamin. Planta Med 63 (1997) 81-3.
6. A. Hawariah, and J. Stanslas, In vitro response of human breast cancer cell lines to the growth-inhibitory effects of styrylpyrone derivative (SPD) and assessment of its antiestrogenicity. Anticancer Res 18 (1998) 4383-6.
7. W.B. Pratt, and M.J. Welsh, Chaperone functions of the heat shock proteins associated with steroid receptors. Semin Cell Biol 5 (1994) 83-93.
8. N. Umar-Tsafe, M.S. Mohamed-Said, R. Rosli, L.B. Din, and L.C. Lai, Genotoxicity of goniothalamin in CHO cell line. Mutat Res 562 (2004) 91-102.
9. R.D. Knight, R. Parshad, F.M. Price, R.E. Tarone, and K.K. Sanford, X-ray-induced chromatid damage in relation to DNA repair and cancer incidence in family members. Int J Cancer 54 (1993) 589-93.
10. K.M. Chan, N.F. Rajab, M.H. Ishak, A.M. Ali, K. Yusoff, L.B. Din, and S.H. Inayat-Hussain, Goniothalamin induces apoptosis in vascular smooth muscle cells. Chem Biol Interact 159 (2006) 129-40.
11. S.H. Inayat-Hussain, B.O. Annuar, L.B. Din, A.M. Ali, and D. Ross, Loss of mitochondrial transmembrane potential and caspase-9 activation during apoptosis induced by the novel styryl-lactone goniothalamin in HL-60 leukemia cells. Toxicol In Vitro 17 (2003) 433-9.
12. W.Y. Chen, C.C. Wu, Y.H. Lan, F.R. Chang, C.M. Teng, and Y.C. Wu, Goniothalamin induces cell cycle-specific apoptosis by modulating the redox status in MDA-MB-231 cells. Eur J Pharmacol 522 (2005) 20-9.
13. A.V. Franca, J. Elias Junior, B.L. Lima, A.L. Martinelli, and F.J. Carrilho, Diagnosis, staging and treatment of hepatocellular carcinoma. Braz J Med Biol Res 37 (2004) 1689-705.
14. P. Srivatanakul, H. Sriplung, and S. Deerasamee, Epidemiology of liver cancer: an overview. Asian Pac J Cancer Prev 5 (2004) 118-25.
15. J.Z. Zeng, H.Y. Wang, Z.J. Chen, A. Ullrich, and M.C. Wu, Molecular cloning and characterization of a novel gene which is highly expressed in hepatocellular carcinoma. Oncogene 21 (2002) 4932-43.
16. E.K. Bergsland, Molecular mechanisms underlying the development of hepatocellular carcinoma. Semin Oncol 28 (2001) 521-31.
17. S.S. Thorgeirsson, and J.W. Grisham, Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet 31 (2002) 339-46.
18. M. Tien Kuo, and N. Savaraj, Roles of reactive oxygen species in hepatocarcinogenesis and drug resistance gene expression in liver cancers. Mol Carcinog 45 (2006) 701-9.
19. L.Y. Yang, W.L. Chen, J.W. Lin, S.F. Lee, C.C. Lee, T.I. Hung, Y.H. Wei, and C.M. Shih, Differential expression of antioxidant enzymes in various hepatocellular carcinoma cell lines. J Cell Biochem 96 (2005) 622-31.
20. T.Z. Liu, C.C. Hu, Y.H. Chen, A. Stern, and J.T. Cheng, Differentiation status modulates transcription factor NF-kappaB activity in unstimulated human hepatocellular carcinoma cell lines. Cancer Lett 151 (2000) 49-56.
21. K.H. Lee, K.C. Kim, Y.J. Jung, Y.H. Ham, J.J. Jang, H. Kwon, Y.C. Sung, S.H. Kim, S.K. Han, and C.M. Kim, Induction of apoptosis in p53-deficient human hepatoma cell line by wild-type p53 gene transduction: inhibition by antioxidant. Mol Cells 12 (2001) 17-24.
22. J.L. Hsieh, C.L. Wu, C.H. Lee, and A.L. Shiau, Hepatitis B virus X protein sensitizes hepatocellular carcinoma cells to cytolysis induced by E1B-deleted adenovirus through the disruption of p53 function. Clin Cancer Res 9 (2003) 338-45.
23. K.I. Kim, N. Sasase, M. Taniguchi, K. Mita, S.R. Kim, K. Tanaka, and Y. Hayashi, Prediction of efficacy of interferon treatment of chronic hepatitis C and occurrence of HCC after interferon treatment by a new classification. Intervirology 48 (2005) 52-8.
24. W.Y. Lau, T.W. Leung, S.C. Yu, and S.K. Ho, Percutaneous local ablative therapy for hepatocellular carcinoma: a review and look into the future. Ann Surg 237 (2003) 171-9.
25. R.W. Johnstone, A.A. Ruefli, and S.W. Lowe, Apoptosis: a link between cancer genetics and chemotherapy. Cell 108 (2002) 153-64.
26. H.E. Blum, Hepatocellular carcinoma: therapy and prevention. World J Gastroenterol 11 (2005) 7391-400.
27. C.B. Thompson, Apoptosis in the pathogenesis and treatment of disease. Science 267 (1995) 1456-62.
28. F.J. Geske, and L.E. Gerschenson, The biology of apoptosis. Hum Pathol 32 (2001) 1029-38.
29. D.T. Loo, and J.R. Rillema, Measurement of cell death. Methods Cell Biol 57 (1998) 251-64.
30. M. van Gurp, N. Festjens, G. van Loo, X. Saelens, and P. Vandenabeele, Mitochondrial intermembrane proteins in cell death. Biochem Biophys Res Commun 304 (2003) 487-97.
31. S.B. Bratton, and G.M. Cohen, Caspase cascades in chemically-induced apoptosis. Adv Exp Med Biol 500 (2001) 407-20.
32. G.M. Cohen, Caspases: the executioners of apoptosis. Biochem J 326 ( Pt 1) (1997) 1-16.
33. E.M. Creagh, and S.J. Martin, Caspases: cellular demolition experts. Biochem Soc Trans 29 (2001) 696-702.
34. L.M. Martins, T. Kottke, P.W. Mesner, G.S. Basi, S. Sinha, N. Frigon, Jr., E. Tatar, J.S. Tung, K. Bryant, A. Takahashi, P.A. Svingen, B.J. Madden, D.J. McCormick, W.C. Earnshaw, and S.H. Kaufmann, Activation of multiple interleukin-1beta converting enzyme homologues in cytosol and nuclei of HL-60 cells during etoposide-induced apoptosis. J Biol Chem 272 (1997) 7421-30.
35. D.W. Nicholson, and N.A. Thornberry, Caspases: killer proteases. Trends Biochem Sci 22 (1997) 299-306.
36. A. Gewies, and S. Grimm, Cathepsin-B and cathepsin-L expression levels do not correlate with sensitivity of tumour cells to TNF-alpha-mediated apoptosis. Br J Cancer 89 (2003) 1574-80.
37. S. Elmore, Apoptosis: a review of programmed cell death. Toxicol Pathol 35 (2007) 495-516.
38. C.J. Bakkenist, and M.B. Kastan, DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421 (2003) 499-506.
39. S. Burma, B.P. Chen, M. Murphy, A. Kurimasa, and D.J. Chen, ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem 276 (2001) 42462-7.
40. S. Banin, L. Moyal, S. Shieh, Y. Taya, C.W. Anderson, L. Chessa, N.I. Smorodinsky, C. Prives, Y. Reiss, Y. Shiloh, and Y. Ziv, Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281 (1998) 1674-7.
41. C.E. Canman, D.S. Lim, K.A. Cimprich, Y. Taya, K. Tamai, K. Sakaguchi, E. Appella, M.B. Kastan, and J.D. Siliciano, Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281 (1998) 1677-9.
42. R.S. Tibbetts, K.M. Brumbaugh, J.M. Williams, J.N. Sarkaria, W.A. Cliby, S.Y. Shieh, Y. Taya, C. Prives, and R.T. Abraham, A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev 13 (1999) 152-7.
43. J.A. Downs, N.F. Lowndes, and S.P. Jackson, A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature 408 (2000) 1001-4.
44. C. Redon, D. Pilch, E. Rogakou, O. Sedelnikova, K. Newrock, and W. Bonner, Histone H2A variants H2AX and H2AZ. Curr Opin Genet Dev 12 (2002) 162-9.
45. D.R. Pilch, O.A. Sedelnikova, C. Redon, A. Celeste, A. Nussenzweig, and W.M. Bonner, Characteristics of gamma-H2AX foci at DNA double-strand breaks sites. Biochem Cell Biol 81 (2003) 123-9.
46. E.P. Rogakou, D.R. Pilch, A.H. Orr, V.S. Ivanova, and W.M. Bonner, DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273 (1998) 5858-68.
47. L.L. Nielsen, P. Lipari, J. Dell, M. Gurnani, and G. Hajian, Adenovirus-mediated p53 gene therapy and paclitaxel have synergistic efficacy in models of human head and neck, ovarian, prostate, and breast cancer. Clin Cancer Res 4 (1998) 835-46.
48. S.W. Lowe, H.E. Ruley, T. Jacks, and D.E. Housman, p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74 (1993) 957-67.
49. E.A. Slee, D.J. O'Connor, and X. Lu, To die or not to die: how does p53 decide? Oncogene 23 (2004) 2809-18.
50. J. Yu, and L. Zhang, The transcriptional targets of p53 in apoptosis control. Biochem Biophys Res Commun 331 (2005) 851-8.
51. C.M. Aliouat-Denis, N. Dendouga, I. Van den Wyngaert, H. Goehlmann, U. Steller, I. van de Weyer, N. Van Slycken, L. Andries, S. Kass, W. Luyten, M. Janicot, and J.E. Vialard, p53-independent regulation of p21Waf1/Cip1 expression and senescence by Chk2. Mol Cancer Res 3 (2005) 627-34.
52. R. Seth, C. Yang, V. Kaushal, S.V. Shah, and G.P. Kaushal, p53-dependent caspase-2 activation in mitochondrial release of apoptosis-inducing factor and its role in renal tubular epithelial cell injury. J Biol Chem 280 (2005) 31230-9.
53. N.D. Marchenko, A. Zaika, and U.M. Moll, Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J Biol Chem 275 (2000) 16202-12.
54. S.G. Swisher, J.A. Roth, J. Nemunaitis, D.D. Lawrence, B.L. Kemp, C.H. Carrasco, D.G. Connors, A.K. El-Naggar, F. Fossella, B.S. Glisson, W.K. Hong, F.R. Khuri, J.M. Kurie, J.J. Lee, J.S. Lee, M. Mack, J.A. Merritt, D.M. Nguyen, J.C. Nesbitt, R. Perez-Soler, K.M. Pisters, J.B. Putnam, Jr., W.R. Richli, M. Savin, D.S. Schrump, D.M. Shin, A. Shulkin, G.L. Walsh, J. Wait, D. Weill, and M.K. Waugh, Adenovirus-mediated p53 gene transfer in advanced non-small-cell lung cancer. J Natl Cancer Inst 91 (1999) 763-71.
55. Y.T. Tai, T. Strobel, D. Kufe, and S.A. Cannistra, In vivo cytotoxicity of ovarian cancer cells through tumor-selective expression of the BAX gene. Cancer Res 59 (1999) 2121-6.
56. P. Sarraf, E. Mueller, D. Jones, F.J. King, D.J. DeAngelo, J.B. Partridge, S.A. Holden, L.B. Chen, S. Singer, C. Fletcher, and B.M. Spiegelman, Differentiation and reversal of malignant changes in colon cancer through PPARgamma. Nat Med 4 (1998) 1046-52.
57. M. Ohtsubo, A.M. Theodoras, J. Schumacher, J.M. Roberts, and M. Pagano, Human cyclin E, a nuclear protein essential for the G1-to-S phase transition. Mol Cell Biol 15 (1995) 2612-24.
58. E. Lees, Cyclin dependent kinase regulation. Curr Opin Cell Biol 7 (1995) 773-80.
59. C.J. Sherr, and J.M. Roberts, Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev 9 (1995) 1149-63.
60. R. Todd, P.W. Hinds, K. Munger, A.K. Rustgi, O.G. Opitz, Y. Suliman, and D.T. Wong, Cell cycle dysregulation in oral cancer. Crit Rev Oral Biol Med 13 (2002) 51-61.
61. R.A. Weinberg, The retinoblastoma protein and cell cycle control. Cell 81 (1995) 323-30.
62. H. Koga, S. Sakisaka, M. Harada, T. Takagi, S. Hanada, E. Taniguchi, T. Kawaguchi, K. Sasatomi, R. Kimura, O. Hashimoto, T. Ueno, H. Yano, M. Kojiro, and M. Sata, Involvement of p21(WAF1/Cip1), p27(Kip1), and p18(INK4c) in troglitazone-induced cell-cycle arrest in human hepatoma cell lines. Hepatology 33 (2001) 1087-97.
63. L. Delavaine, and N.B. La Thangue, Control of E2F activity by p21Waf1/Cip1. Oncogene 18 (1999) 5381-92.
64. W.S. el-Deiry, T. Tokino, V.E. Velculescu, D.B. Levy, R. Parsons, J.M. Trent, D. Lin, W.E. Mercer, K.W. Kinzler, and B. Vogelstein, WAF1, a potential mediator of p53 tumor suppression. Cell 75 (1993) 817-25.
65. W.J. Oh, W.H. Kim, K.H. Kang, T.Y. Kim, M.Y. Kim, and K.H. Choi, Induction of p21 during ceramide-mediated apoptosis in human hepatocarcinoma cells. Cancer Lett 129 (1998) 215-22.
66. R.J. Deshaies, SCF and Cullin/Ring H2-based ubiquitin ligases. Annu Rev Cell Dev Biol 15 (1999) 435-67.
67. M. Pagano, S.W. Tam, A.M. Theodoras, P. Beer-Romero, G. Del Sal, V. Chau, P.R. Yew, G.F. Draetta, and M. Rolfe, Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 269 (1995) 682-5.
68. M. Shirane, Y. Harumiya, N. Ishida, A. Hirai, C. Miyamoto, S. Hatakeyama, K. Nakayama, and M. Kitagawa, Down-regulation of p27(Kip1) by two mechanisms, ubiquitin-mediated degradation and proteolytic processing. J Biol Chem 274 (1999) 13886-93.
69. P. Coulombe, G. Rodier, E. Bonneil, P. Thibault, and S. Meloche, N-Terminal ubiquitination of extracellular signal-regulated kinase 3 and p21 directs their degradation by the proteasome. Mol Cell Biol 24 (2004) 6140-50.
70. A.C. Carrano, E. Eytan, A. Hershko, and M. Pagano, SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol 1 (1999) 193-9.
71. L.M. Tsvetkov, K.H. Yeh, S.J. Lee, H. Sun, and H. Zhang, p27(Kip1) ubiquitination and degradation is regulated by the SCF(Skp2) complex through phosphorylated Thr187 in p27. Curr Biol 9 (1999) 661-4.
72. K.I. Nakayama, S. Hatakeyama, and K. Nakayama, Regulation of the cell cycle at the G1-S transition by proteolysis of cyclin E and p27Kip1. Biochem Biophys Res Commun 282 (2001) 853-60.
73. G. Bornstein, D. Ganoth, and A. Hershko, Regulation of neddylation and deneddylation of cullin1 in SCFSkp2 ubiquitin ligase by F-box protein and substrate. Proc Natl Acad Sci U S A 103 (2006) 11515-20.
74. J. Bartek, and J. Lukas, Pathways governing G1/S transition and their response to DNA damage. FEBS Lett 490 (2001) 117-22.
75. G. Bornstein, J. Bloom, D. Sitry-Shevah, K. Nakayama, M. Pagano, and A. Hershko, Role of the SCFSkp2 ubiquitin ligase in the degradation of p21Cip1 in S phase. J Biol Chem 278 (2003) 25752-7.
76. Y.H. Lan, F.R. Chang, J.H. Yu, Y.L. Yang, Y.L. Chang, S.J. Lee, and Y.C. Wu, Cytotoxic styrylpyrones from Goniothalamus amuyon. J Nat Prod 66 (2003) 487-90.
77. P.K. Narayanan, E.H. Goodwin, and B.E. Lehnert, Alpha particles initiate biological production of superoxide anions and hydrogen peroxide in human cells. Cancer Res 57 (1997) 3963-71.
78. R.R. Tice, E. Agurell, D. Anderson, B. Burlinson, A. Hartmann, H. Kobayashi, Y. Miyamae, E. Rojas, J.C. Ryu, and Y.F. Sasaki, Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35 (2000) 206-21.
79. J.G. Jackson, and O.M. Pereira-Smith, p53 is preferentially recruited to the promoters of growth arrest genes p21 and GADD45 during replicative senescence of normal human fibroblasts. Cancer Res 66 (2006) 8356-60.
80. R.L. Weinberg, D.B. Veprintsev, and A.R. Fersht, Cooperative binding of tetrameric p53 to DNA. J Mol Biol 341 (2004) 1145-59.
81. S.R. Frank, M. Schroeder, P. Fernandez, S. Taubert, and B. Amati, Binding of c-Myc to chromatin mediates mitogen-induced acetylation of histone H4 and gene activation. Genes Dev 15 (2001) 2069-82.
82. E. Solary, S. Plenchette, O. Sordet, C. Rebe, P. Ducoroy, R. Filomenko, J.M. Bruey, N. Droin, and L. Corcos, Modulation of apoptotic pathways triggered by cytotoxic agents. Therapie 56 (2001) 511-8.
83. P.G. Satchell, J.L. Gutmann, and D.E. Witherspoon, Apoptosis: an introduction for the endodontist. Int Endod J 36 (2003) 237-45.
84. C. Wiart, Ethnopharmacology of Medicinal Plants: Asia and the Pacific. USA: Humana Press (2007).
85. R.H. Burdon, Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radic Biol Med 18 (1995) 775-94.
86. H. Sauer, M. Wartenberg, and J. Hescheler, Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol Biochem 11 (2001) 173-86.
87. H. Niida, and M. Nakanishi, DNA damage checkpoints in mammals. Mutagenesis 21 (2006) 3-9.
88. M. Asada, T. Yamada, H. Ichijo, D. Delia, K. Miyazono, K. Fukumuro, and S. Mizutani, Apoptosis inhibitory activity of cytoplasmic p21(Cip1/WAF1) in monocytic differentiation. EMBO J 18 (1999) 1223-34.
89. Y. Kudo, S. Kitajima, I. Ogawa, M. Kitagawa, M. Miyauchi, and T. Takata, Small interfering RNA targeting of S phase kinase-interacting protein 2 inhibits cell growth of oral cancer cells by inhibiting p27 degradation. Mol Cancer Ther 4 (2005) 471-6.
90. K. Nakayama, H. Nagahama, Y.A. Minamishima, M. Matsumoto, I. Nakamichi, K. Kitagawa, M. Shirane, R. Tsunematsu, T. Tsukiyama, N. Ishida, M. Kitagawa, and S. Hatakeyama, Targeted disruption of Skp2 results in accumulation of cyclin E and p27(Kip1), polyploidy and centrosome overduplication. EMBO J 19 (2000) 2069-81.
91. M. Shapira, O. Ben-Izhak, B. Bishara, B. Futerman, I. Minkov, M.M. Krausz, M. Pagano, and D.D. Hershko, Alterations in the expression of the cell cycle regulatory protein cyclin kinase subunit 1 in colorectal carcinoma. Cancer 100 (2004) 1615-21.
92. Y.S. Tsai, H.C. Chang, L.Y. Chuang, and W.C. Hung, RNA silencing of Cks1 induced G2/M arrest and apoptosis in human lung cancer cells. IUBMB Life 57 (2005) 583-9.
93. A. Krueger, S.C. Fas, S. Baumann, and P.H. Krammer, The role of CD95 in the regulation of peripheral T-cell apoptosis. Immunol Rev 193 (2003) 58-69.
94. S. Roy, and D.W. Nicholson, Cross-talk in cell death signaling. J Exp Med 192 (2000) F21-5.
95. A. Strasser, A.W. Harris, D.C. Huang, P.H. Krammer, and S. Cory, Bcl-2 and Fas/APO-1 regulate distinct pathways to lymphocyte apoptosis. Embo J 14 (1995) 6136-47.
96. S.P. Hussain, and C.C. Harris, p53 biological network: at the crossroads of the cellular-stress response pathway and molecular carcinogenesis. J Nippon Med Sch 73 (2006) 54-64.
97. Z. Tian, S. Chen, Y. Zhang, M. Huang, L. Shi, F. Huang, C. Fong, M. Yang, and P. Xiao, The cytotoxicity of naturally occurring styryl lactones. Phytomedicine 13 (2006) 181-6.
電子全文 Fulltext
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是
論文開放下載的時間是 校外不公開

Your IP address is
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
開放時間 available 已公開 available

QR Code