Responsive image
博碩士論文 etd-0715108-155317 詳細資訊
Title page for etd-0715108-155317
論文名稱
Title
離子液體分散奈米碳管之塑膠複合材料電磁屏蔽效應
High Electromagnetic Shielding of Multiwall Carbon Nanotube Composites Using Ionic Liquid Dispersant
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
92
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-06-23
繳交日期
Date of Submission
2008-07-15
關鍵字
Keywords
多層壁奈米碳管、離子液體
MultiWall Carbon Nanotube, Ionic Liquid
統計
Statistics
本論文已被瀏覽 5679 次,被下載 9
The thesis/dissertation has been browsed 5679 times, has been downloaded 9 times.
中文摘要
本研究主要是利用離子液體(IL)來分散多層壁奈米碳管(MWCNT),以聚亞醯胺(PI)為基材,製作多層壁奈米碳管塑膠複合材料,並將其高電磁屏蔽效率(SE)應用於光收發模組電磁輻射干擾(EMI)上。實驗結果顯示經由離子液體分散的多層壁奈米碳管塑膠複合材料在頻率1 GHz到3 GHz的範圍內,可達到38 dB至45 dB的遠場電磁屏蔽效率。相對於沒有使用分散製程的電磁屏蔽複合材料,使用離子液體分散多層壁奈米碳管的電磁屏蔽複合材料,能在摻雜多層壁奈米碳管較低的重量百分比下達到相當程度的電磁屏蔽效率。
為了清楚地了解系統中分子間的作用力,多層壁奈米碳管的分散機制也被定性地研究。多層壁奈米碳管的聚集是由於碳管間的凡得瓦力(van der Waals forces)吸引所致,在研究中我們使用離子液體來分散多層壁奈米碳管,主要是由於離子液體中的陽離子與碳管表面π電子間的作用力大於多層壁奈米碳管間微弱的凡得瓦力所致,在導電率量測中,加入離子液體分散的多層壁奈米碳管複合材料薄膜,其展透門檻為5.2 wt%,未加離子液體分散的薄膜其展透門檻為11.5 wt%,由展透門檻的降低,可證實加入離子液體的確可以幫助分散多層壁奈米碳管。從拉曼光譜分析中可確認使用離子液體分散並不改變多層壁奈米碳管複合材料原本的特性,屬於物理分散而非化學分散。
進一步地,使用離子液體分散的多層壁奈米碳管塑膠複合材料來封裝電單極天線,其結果顯示在頻率2.8 GHz時,可達37 dB的近場電磁屏蔽效率,表示其具有高電磁屏蔽效應以及抗電磁輻射干擾的效果。故可以適用於低成本、高性能光收發模組之封裝材料,可應用在都會網路及光纖到家 (FTTH) 的光通訊系統上。
Abstract
In this study, a novel polyimide (PI) film, consisting of multiwall carbon nanotubes (MWCNTs) dispersed in an Ionic Liquid (IL), were demonstrated to be high shielding effectiveness (SE). The film was potentially useful for screening electromagnetic interference(EMI) in an optical transceiver module. The experimental results showed MWCNT-PI composite dispersed well in IL exhibits a high far-field SE of 38 ~ 45 dB within the frequency range of 1 ~ 3 GHz. It was also demonstrated the MWCNT-PI composite prepared with IL dispersed process have higher SE and lower weight percentage of MWCNTs than those with non-IL-dispersed process. Their intermolecular forces were carefully examined in order to understand dispersion mechanisms among MWCNTs. The aggregation phenomenon of MWCNTs was known, resulting from van der Waals forces. In our study, IL was employed to disperse MWCNTs. A proposal reason was that the attractive force between cation of the IL and π electrons of MWCNTs is greater than the van der Waals forces among MWCNTs. From conductivity measurement, percolation threshold of the IL-dispersed MWCNT-PI composite was 5.2 wt%; percolation threshold of the non-IL-dispersed MWCNT-PI composite was 11.5 wt%. Given the lower percolation threshold ,we demonstrated the successful dispersion of MWCNT by adding IL. From the results of Raman spectrometer analyses, the IL dispersion was proved to be a physical interaction.
Furthermore, the IL-dispersed MWCNT-PI composite was used as package material in monopole antenna and got a near-field SE of 37dB within the frequency of 2.8 GHz. It implied that the IL-dispersed MWCNT-PI composite has an excellent EMI performance.The IL-dispersed MWCNT-PI composite is suitable for packaging low-cost and high-performance optical transceiver modules in the application of the fiber-to-the-home (FTTH) lightwave transmission systems.
目次 Table of Contents
中文摘要 I
英文摘要 II
致 謝 III
內容目錄 IV
圖表目錄 VII
第一章 導論 1
1.1 研究目的 1
1.2 論文架構 2
第二章 電磁屏蔽理論分析 4
2.1 材料的吸收損失 5
2.2 材料的反射損失 9
2.3 材料的多重反射損失 16
第三章 電磁屏蔽複合材料的製程 21
3.1 奈米碳管 21
3.1.1 奈米碳管的機械性質 22
3.1.2 奈米碳管的電性 23
3.1.3 奈米碳管的製程 25
3.2 聚亞醯胺 27
3.3 奈米碳管塑膠複合材料薄膜的製程 28
第四章 分散理論機制 39
4.1 奈米碳管叢聚現象 39
4.2 分散奈米碳管 40
4.2.1 黏土 40
4.2.2 離子液體 41
4.2.3 吸收度量測 41
4.3 離子液體分散奈米碳管 42
4.3.1 離子液體的分散機制 42
4.3.2 探討作用力的大小 44
4.3.3 展透門檻量測 44
4.3.4 SEM觀測奈米碳管的分散 45
4.4 拉曼光譜分析量測 46
第五章 電磁屏蔽效率量測 55
5.1 導電率量測 56
5.1.1 四點探針量測 56
5.1.2四點探針量測架構 56
5.1.3 導電率量測結果 59
5.2 遠場電磁屏蔽效率量測 59
5.2.1遠場電磁屏蔽效率量測架構 60
5.2.2遠場電磁屏蔽效率量測結果 61
5.3 近場電磁屏蔽效率量測 61
5.3.1近場電磁屏蔽效率量測架構 62
5.3.2近場電磁屏蔽效率量測結果 63
5.4 導電網路結構 63
第六章、結論 72
6.1 結論 72
6.2 未來方向 74
參考文獻 75
參考文獻 References
[1]W. H. Cheng, J. Y. Cheng, T. L. Wu, C. M. Wang, S. C. Wang, and W. S.Jou, “Electromagnetic shielding of plastic packaging in low-cost laser modules,” Electronics Letters, Vol. 36, No. 2, pp. 118-119, (2000).
[2]W. S. Jou, T. L. Wu, S. K. Chiu, and W. H. Cheng, “Electromagnetic Shielding of Nylon-66 Composites Applied to Laser Modules,” IEEE/TMS Journal of Electronic Materials, Vol. 30, No. 10, pp. 1287-1293, (2001).
[3]李建輝, “新型編織碳纖維複合材料應用於2.5Gbs光收發模組電磁屏蔽效應之研究” 國立中山大學碩士論文, (2004).
[4]Standard Testing Method for Measuring the Electromagnet Electromagnetic Shielding Effectiveness of Planner Materials, ASTM D4935-99. (ASTM, Philadelphia, PA, USA).
[5]David K. Cheng, “Field and wave electromagnetic”, Reading, Mass. Addison Wesley, (1989).
[6]Mills,Jeffrey P, “Electro-magnetic interference reduction in electronic systems”, Englewood Cliffs, N.J. : PTR Prentice Hall, (1993).
[7]Donald R.J. White and Michel Mardiguian, “Electromagnetic Shielding”, A handbook series on electromagnetic interference and compatibility, Vol. 3, chapter 2, 6 and 7, (1988).
[8]R.B.Schulz, V.C. Plantz, and D.R. Brush, “Shielding theory and practice”, IEEE Trans. on Electromagnetic Compatibility, EMC-30, pp. pp. 187-201, (1988).
[9]Henry W. Ott “ Noise Reduction Techniques in Electronic Systems”, A Wiley-interscience Publication, (1988).
[10] 張家銘, “多層壁奈米碳管複合材料電磁屏蔽之研究”, 國立中山大學博士論文, (2008).
[11] Clayton R. Paul, “Introduction to Electromagnetic Compatibility”, Wiley series in Microwave and Optical Engineering, pp. 632-648, (1992).
[12] http://en.wikipedia.org/wiki/Nanotechnology
[13] S. lijima , “Helical Microtubeles of Graphitic carbon” , Nature, Vol. 354, pp. 56, (1991).
[14] Coffman FL, Cao R, Pianetta PA, et al. “Near-edge x-ray absorption of carbon materials for determining bond hybridization In mixed sp2/sp3 bonded materials”J Appl Phys Lett, Vol. 69, No. 4, pp. 568-570, (1996).
[15] 黃建盛,“奈米碳管簡介”科學新天地.
[16] O. Zhou, R. M. Fleming, D W. Murphy, C. H. Chen, R. C. Haddon, A.P.Ramirez, and S.H.Glarum, “Defects in Carbon Nano-Structures” Science, Vol. 263, pp. 1744 -1747, (1994).
[17] http://www.wtec.org/loyola/nano/04_03.htm
[18] 洪文祺, “新型編織碳纖維複合材料電磁屏蔽效應之研究”, 國立中山大學碩士論文, (2001).
[19] J. Kong, M. Cassell and H. G. Dai, “Chemical vapor deposition of methane for single-walled carbonnanotubes”, Chemical Physics Letters, Vol. 292, pp. 567-574, (1998).
[20] 成會明, “奈米碳管”, 五南, (2004).
[21] Jiao, S. Seraphin, Journal of Physics and Chemistry of Solids, Vol. 61, pp. 1055-1067, (2000).
[22] 簡逸朋, “以多孔矽基板成長奈米碳管之研究”, 中原大學碩士論文, pp. 7-8, (2002).
[23] Matsushima M, Araki H, Kamide K, et al.“Field emission from bamboo-like multiwalled carbon nanotube arrays enhanced by mild oxidation” Jpn. J. Appl. Phys., Vol. 42, Part 2, No. 8B, pp. 1036-1038, (2003).
[24] 余君臨, “聚醯亞胺/黏土奈米複合材料之物理化學性質與微結構分析”, 國立中山大學碩士論文, pp. 13-16, (2001).
[25] http://en.wikipedia.org/wiki/Image:Benzene-orbitals2.png
[26]Takanori Fukushima, Atsuko Kosaka, Yoji Ishimura,Takashi Yamamoto, Toshikazu Takigawa, Noriyuki Ishii,Takuzo Aida1, “Molecular Ordering of Organic Molten Salts Triggered by Single-Walled Carbon Nanotubes”, Science, Vol 300, pp.2072-2074, (2003).
[27] C.M. Chang, J.C. Chiu, W.S. Jou, T.L. Wu, and W.H. Cheng, "New package scheme of a 2.5Gb/s plastic transceiver module employing multiwall nanotubes for low electromagnetic interference", J. Sel. Topics Quantum Electron., vol. 12, No. 5, pp. 1025-1031, (2006).
[28] Stand Test Method for Sheet Resistance of Thin Metallic Films with a Collinear Four-Probe Array, ASTD F390-97.
[29] T.L. Wu, W.S. Jou, S.G. Dai, and W.H. Cheng, ”Effective Electromagnetic Shielding of Plastic Packaging in Low-Cost Optical Transceiver Modules,” J. Lightwave Technology, vol. 21, pp. 1536, (2003).
[30] T.L. Wu, W.S. Jou, W.C. Hung, C.H. Lee, C.W. Lin and W.H. Cheng,“High shielding effectiveness plastic package for 2.5Gbit/s optical transceiver module”, Electron. Lett., vol. 40, pp. 260-262, (2004)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.144.161.116
論文開放下載的時間是 校外不公開

Your IP address is 3.144.161.116
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code