Responsive image
博碩士論文 etd-0715108-183154 詳細資訊
Title page for etd-0715108-183154
論文名稱
Title
微型侵入式低功率膀胱壓力訊號量測系統與 適用於高速內容可定址記憶體之自動關閉感測技術
A Mini-invasive Low-power Measurement System of Bladder Pressure and A Self-disable Sense Technique for Content Addressable Memory
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
82
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-06-20
繳交日期
Date of Submission
2008-07-15
關鍵字
Keywords
感測、膀胱壓力、儀表放大器、內容可定址記憶體
bladder pressure, instrumentation amplifier, sense, content addressable memory
統計
Statistics
本論文已被瀏覽 5668 次,被下載 0
The thesis/dissertation has been browsed 5668 times, has been downloaded 0 times.
中文摘要
本論文第一部份提出一個微型侵入式低功率膀胱壓力量測系統,不但量測模式可以切換,而且儀表放大器的輸入範圍和放大倍率可以被調性地調整。此設計能藉由連續模式量測膀胱內動態壓力訊號,也能藉由具有節省功\率休眠機制的長時間模式觀察。本系統係將壓力感測器訊號經由IA放大,傳給下一級ADC,而IA必須可以調整維持訊號線性度。此系統可量測之壓力範圍為5 Psi,最大解析度可達1 cm-H2O,對於已知之異常膀胱病症皆適用。
論文的第二部份提出一個適用於高速內容可定址記憶體之自動關閉搜尋技術,此差動比較線之感測電路設計在比對結果產生後,進入比較線之充電電流會被自動關閉。此外,本設計之13-T CAM單元提供完整的寫入、讀取和比較功能來更新資料庫並驗證其正確性。模擬驗證顯示本論文之CAM設計在搜尋過程之平均能量消耗為1.872 fJ/bit/search。
Abstract
The first topic of the thesis reveals a mini-invasive low-power measurement system for bladder pressure measurement. Not only can the mode of measurement be selected, the input range and amplification of instrumentation amplifier (IA) is also adjustable. The proposed system can measure the pressure in a bladder in a continuous mode. It also can monitor the pressure in a long-term mode with an automatic sleeping mechanism for power saving. The signal generated by the pressure sensor is sensed by an IA, which is then fed into the following ADC (analog-to-digital converter). The input range of the IA must be adjustable to keep the required linearity. The pressure range of the proposed system is found out to be 5 Psi with the maximum resolution of 1 cm-H2O, which covers the range of all of the known unusual bladder syndromes.
The second topic is a self-disable sense technique for content addressable memory (CAM). The differential match-line sense circuit can be self-disabled to choke the charge current fed into the match line right after the comparison result is generated. Besides, the 13-T CAM cell provides the complete write, read, and comparison functions to refresh the data bit and verify its correctness before searching. The average energy consumption of the searching process is 1.872 fJ/bit/search according to thorough simulations.
目次 Table of Contents
致謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vii
表目錄 xi
第一章 概論 1
1.1 研究背景 1
1.1.1 微型侵入式低功率膀胱壓力訊號量測系統 1
1.1.2 適用於高速內容可定址記憶體之自動關閉感測技術 2
1.2 研究動機 3
1.2.1 微型侵入式低功率膀胱壓力訊號量測系統 3
1.2.2 適用於高速內容可定址記憶體之自動關閉感測技術 5
1.3 論文大綱 7
第二章 微型侵入式低功率膀胱壓力訊號量測系統 8
2.1 簡介 8
2.2 系統架構 9
2.3 電路設計 10
2.3.1 儀表放大器(Instrumentation Amplifier, IA) 10
2.3.2 連續逼近式類比數位轉換器(Successive Approximation ADC, SA ADC) 12
2.3.3 並列串列轉換器(Parallel to Serial, PtoS) 14
2.3.4 時間控制器(Timer & Controller, T&C) 15
2.4 電路模擬與預計規格 17
2.4.1 電路模擬結果 17
2.4.2 晶片預計規格 22
2.5 晶片實作之量測結果與討論 23
2.5.1 晶片實作之量測結果 23
2.5.2 晶片量測結果之討論 34
第三章 適用於高速內容可定址記憶體之自動關閉感測技術 35
3.1 簡介 35
3.2 電路架構 36
3.3 電路設計 38
3.3.1 內容可定址記憶體單元(CAM Cell) 38
3.3.2 資料搜尋電路(Search Circuit) 40
3.3.3 位址解碼電路(Address Decoder) 43
3.3.4 行驅動電路(Column Driver) 44
3.3.5 控制寫入或讀取資料之多工器(WR_MUX) 44
3.3.6 位址編碼器(Location Encoder) 45
3.3.7 符合編碼器(Match Encoder) 46
3.3.8 讀取緩衝器(Read Buffer) 46
3.3.9 並列串列轉換器(PtoS_32to8) 47
3.3.10 控制電路(Control Circuit) 48
3.4 電路模擬與預計規格 48
3.4.1 電路模擬結果 48
3.4.2 晶片預計規格 58
3.4.3 結果與討論 59
第四章 研究成果與結論 61
參考文獻 62

圖目錄
圖2.2.1 微型侵入式低功率膀胱壓力訊號量測系統架構圖 10
圖2.3.1 可變輸入範圍和放大倍率之儀表放大器(IA) 10
圖2.3.2 IA之設計考量示意圖 12
圖2.3.3 八位元連續逼近式類比數位轉換器(SA ADC) 13
圖2.3.4 SA ADC之動態比較器 14
圖2.3.5 並列序列轉換器(PtoS) 15
圖2.3.6 環型震盪器 16
圖2.3.7 除頻電路 16
圖2.3.8 重置電路 17
圖2.4.1 IA不同輸入範圍之頻率響應 18
圖2.4.2 IA不同輸入範圍之直流分析轉換曲線 19
圖2.4.3 SA ADC之INL與DNL 19
圖2.4.4 SA ADC四種輸入電壓轉換過程 20
圖2.4.5 並列串列轉換器之功能模擬 20
圖2.4.6 reset、osc_out與除頻後訊號 21
圖2.4.7 系統各時脈與輸出之時序圖 22
圖2.5.1 微型侵入式低功率膀胱壓力訊號量測系統之ASIC晶片佈局照相圖 24
圖2.5.2 晶片量測裝置圖 25
圖2.5.3 IA放大輸入範圍80 ~ 120 mV訊號之輸出 26
圖2.5.4 IA不同輸入範圍與輸出之關係 26
圖2.5.5 觀測SA ADC取樣與解析過程 27
圖2.5.6 SA ADC輸入0.665 V之解析過程 28
圖2.5.7 SA ADC輸入1.607 V之解析過程 28
圖2.5.8 SA ADC輸入2.506 V之解析過程 29
圖2.5.9 SA ADC之INL與DNL 29
圖2.5.10 PtoS序列輸出表現 30
圖2.5.11 震盪器輸出 30
圖2.5.12 reset訊號之時間觀察 31
圖2.5.13 晶片工作啟動訊號 31
圖2.5.14 晶片內各時脈訊號 32
圖2.5.15 整個系統裝置圖 32
圖2.5.16 RF模組接收端接收到的訊號 33
圖3.2.1 適用於內容可定址記憶體之自動關閉搜尋技術架構圖 37
圖3.3.1 13-T內容可定址記憶體單元架構圖 39
圖3.3.2 128×32之內容可定址記憶體單元陣列圖 39
圖3.3.3 全平行資料搜尋方式示意圖 42
圖3.3.4 對單一條字元線之9-T CAM cell做資料搜尋的示意圖 42
圖3.3.5 感測電路(sense circuit, SC) 42
圖3.3.6 位址解碼電路之子電路(RD) 43
圖3.3.7 位址解碼電路之整體電路 43
圖3.3.8 行驅動電路之子電路(CD) 44
圖3.3.9 行驅動電路之整體電路 44
圖3.3.10 控制寫入或讀取資料之多工器 45
圖3.3.11 位址編碼器 45
圖3.3.12 符合編碼器 46
圖3.3.13 讀取緩衝電路 46
圖3.3.14 並列串列轉換器之單元(PS) 47
圖3.3.15 並列串列轉換器(PtoS_32to8) 47
圖3.3.16 控制電路 48
圖3.4.1 對單一條字元線做資料搜尋之感測電路模擬結果(一) 49
圖3.4.2 對單一條字元線做資料搜尋之感測電路模擬結果(二) 50
圖3.4.3 資料搜尋比對不符合數目和搜尋時間關係圖 50
圖3.4.4 資料搜尋比對不符合數目和功率消耗關係圖 50
圖3.4.5 整體電路寫入操作模擬結果(ㄧ) 51
圖3.4.6 整體電路寫入操作模擬結果(二) 52
圖3.4.7 整體電路寫入操作模擬結果(三) 52
圖3.4.8 整體電路寫入操作模擬結果(四) 53
圖3.4.9 整體電路讀取操作模擬結果(ㄧ) 54
圖3.4.10 整體電路讀取操作模擬結果(二) 54
圖3.4.11 整體電路搜尋操作模擬結果(ㄧ) 56
圖3.4.12 整體電路搜尋操作模擬結果(二) 56
圖3.4.13 整體電路搜尋操作模擬結果(三) 57
圖3.4.14 整體電路搜尋操作模擬結果(四) 57
圖3.4.15 本設計之內容可定址記憶體晶片佈局圖 58

表目錄
表2.4.1 IA不同輸入範圍之Rx與Vref的分壓電阻關係表 18
表2.4.2 膀胱壓力量測系統之ASIC晶片預計規格表 23
表2.5.1 IA輸入範圍搭配電阻之輸出和增益之對照表 27
表2.5.2 膀胱壓力量測系統預計規格與晶片實測比較表 33
表3.4.1 內容可定址記憶體之預計規格與先前文獻之比較 59
參考文獻 References
[1] E. J. McGuire, J. R. Woodside, and T. A. Borden, “Upper urinary tract deterioration in patients with myelodysplasia and detrusor hypertonia:a followup study,” J. Urol., vol. 129, pp. 823-826, Apr. 1983.
[2] M. J. Kothari, S. B. Bauer, E. L. Logigian, and J. M. Shefner, “Electrophysiological and urodynamic studies to monitor surgical outcome in children with tethered spinal cords,” Muscle and Nerve, vol. 18, pp. 1373-1377, Dec 1995.
[3] M. S. Damaser, M. Parikh, and T. W. Cannon, “A new method of noninvasively measuring bladder leak point pressure in female rats,” 22th IEEE Engineering in Medicine and Biology Society, vol. 1, pp. 575-577, July 2000.
[4] T. Watanabe, D. A. Rivas, and M. B. Chancellor, “Urodynamics of spinal cord injury,” Urologic Clinics North Amer., vol. 23, pp. 459-473, Aug. 1996.
[5] W. B. Shingleton, and D. R. Bodner, “The development of urologic complications in relationship to bladder pressure in spinal cord injured patients,” J. Amer. Paraplegia Soc., vol. 16, pp. 14-17, Jan. 1993.
[6] J. M. H. Teichman, H. C. Scherz, K. D. Kim, D. H. Cho, M. G. Packer, and G. W. Kaplan, “An alternative approach to myelodysplasia management: aggressive observation and prompt intervention,” J. Urol., vol. 152, pp. 807-811, Aug. 1994.
[7] T. Ogura, M. Nakanishi, T. Baba, Y. Nakabayashi, and R. Kasai, “A 336-kbit content addressable memory for highly parallel image processing,” in Proc. of IEEE Conf. on Custom Integrated Circuits, pp. 273-276, May 1996.
[8] T. Ikenaga, and T. Ogura, “A fully-parallel 1 Mb CAM LSI for real-time pixel-parallel image processing,” IEEE Int. Solid-State Circuits Conf., pp. 264-265, Feb. 1999.
[9] K.-J. Lin, and C.-W. Wu, “A low-power CAM design for LZ data compression,” IEEE Trans. on Computers, vol. 49, no. 10, pp. 1139-1145, Oct. 2000.
[10] R.-Y. Yang, and C.-Y. Lee, “High-throughput data compressor designs using content addressable memory,” in Proc. of IEEE Int. Symp. on Circuits and Systems, vol. 4, pp. 147-150, June 1994.
[11] R. J. Glaise, and J. M. Munier, “A low cost searching device for an ATM adapter,” in Proc. of IEEE Int. Conf. on Computer Communications and Networks, pp. 488-493, Sept. 1997.
[12] C.-S. Lin, B.-D. Liu, and Y.-C. Tang, “Design of a shared buffer management scheme for ATM switches,” in Proc. of IEEE Int. Conf. on ASIC/SOC, pp. 261-264, Sept. 2002.
[13] T. Yamagata, M. Mihara, T. Hamamoto, T. Kobayashi, and M. Yamada, “A 288-kbit fully parallel content addressable memory using stacked capacitor cell structure,” in Proc. of IEEE Conf. on Custom Integrated Circuits, pp. 10.3/1-10.3/4, May 1991.
[14] S. Akyokus, and P. B. Berra, “Optical content addressable memories for data/knowledge base processing,” in Proc. of IEEE Int. Symp. on Parallel Processing Symposium, pp. 202-207, May 1991.
[15] H.-H. S. Lee, and C. S. Ballapuram, “Energy efficient D-TLB and data cache using semantic-aware multilateral partitioning,” in Proc. of IEEE Int. Symp. on Low Power Electronics and Design, pp. 306-311, Aug. 2003.
[16] J.-H. Lee, G.-H. Park, S.-B. Park, and S.-D. Kim, “A selective filter-bank TLB system [embedded processor MMU for low power] ,” in Proc. of IEEE Int. Symp. on Low Power Electronics and Design, pp. 312-317, Aug. 2003.
[17] K. Pagiamtzis, and A. Sheikholeslami, “Content-addressable memory (CAM) circuits and architectures: a tutorial and survey,” IEEE J. Solid -State Circuits, vol. 41, no. 3, pp. 712-727, March 2006.
[18] D. E. Taylor, J. S. Turner, J. W. Lockwood, T. S. Sproull, and D. B. Parlour, “Scalable IP lookup for Internet routers,” IEEE J. of Selected Areas in Communications, vol. 21, pp. 522-534, May 2003.
[19] Z. Liang, J. Wu, and K. Xu, “A TCAM-based IP lookup scheme for multi-nexthop routing,” in Proc. of IEEE Int. Conf. on Computer Networks and Mobile Computing, pp. 128-135, Oct. 2003.
[20] J. S. Walter, J. S. Wheeler, W. Cai, W. W. King, and R. D. Wurster, “Evaluation of a suture electrode for direct bladder stimulation in a lower motor neuron lesioned animal mode,” IEEE Trans. on Rehabilation Engineering, vol. 7, no. 2, pp. 159-166, June 1999.
[21] G. Drzewiecki, V. Bansal, E. Karam, R. Hood, and H. Apple, “The development of urologic complications in relationship to bladder pressure in spinal cord injured patients,” IEEE Trans. on Biomedical Engineering, vol. 40, no. 7, pp. 704-708, July 1993.
[22] M. S. Damaser, G. J. Andros, J. S. Walter, L. Schlehahn, K. Brzezinski, and J. S. Wheeler, “Home monitoring of bladder pressure in pediatric patients with spina bifida,” 19th IEEE Engineering in Medicine and Biology Society, vol. 5, pp. 1915-1918, Nov. 1997.
[23] E. J. McGuire, F. Noll, and F. Maynard, “A pressure management system for the neurogenic bladder after spinal cord injury,” Neurourol. Urodynam., vol. 10, pp. 223-230, Dec. 1991.
[24] J.-S. Liou, “A low-noise instrumentation amplifier for neural signal sensing and a low-power implantable bladder pressure monitor system,” Master thesis, Department of Electrical Engineering, National Sun Yat-Sen University Kashsiung, Taiwan, June 2007.
[25] H. Noda, K. Inoue, H. J. Mattausch, T. Koide, and K. Arimoto, “A cost-efficient dynamic ternary CAM in 130nm CMOS technology with planar complementary capacitors and TSR architecture,” in Proc. of IEEE Int. Symp. on VLSI Circuits, pp. 83-84, June 2003.
[26] E. Shen, and J. B. Kuo, “A novel 0.8V BP-DTMOS content addressable memory cell circuit derived from SOI-DTMOS techniques,” IEEE Electron Devices and Solid-State Circuits Conf., pp. 243-245, Dec. 2003.
[27] I. Arsovski, T. Chandler, and A. Sheikholeslami, “A ternary content-addressable memory (TCAM) based on 4T static storage and including a current-race sensing scheme,” IEEE J. Solid-State Circuits, vol. 38, no. 1, pp. 155-158, Jan. 2003.
[28] N. Mohan, W. Fung, D. Wright, and M. Sachdev, “Match line sense amplifiers with positive feedback for low-power content addressable memories,” IEEE Custom Integrated Circuits Conf., pp. 297-300, Sept. 2006.
[29] J. Zhang, Y. Ye, and B. Liu, “A low-power technique based on charge injection and current-saving methods for match-line sensing in content-addressable memories,” in Proc. of IEEE Asia Pacific Conf. on Circuits and Systems, pp. 1293-1296, Dec. 2006.
[30] I. Arsovski, and A. Sheikholeslami, “A mismatch-dependent power allocation technique for match- line sensing in content-addressable memories,” IEEE J. Solid -State Circuits, vol. 38, no. 11, pp. 1958-1966, Nov. 2003.
[31] P.-T. Huang, W.-K. Chang, and W. Hwang, “Low power pre-comparision Scheme for NOR-type 10T content addressable memory,” in Proc. of IEEE Asia Pacific Conf. on Circuits and Systems, pp. 1301-1304, Dec. 2006.
[32] H. Noda, K. Inoue, M. Kuroiwa, F. Igaue, K. Yamamoto, H. J. Mattausch, T. Koide, A. Amo, A. Hachisuka, S. Soeda, I. Hayashi, F. Morishita, K. Dosaka, K. Arimoto, K. Fujishima, K. Anami, and T. Yoshihara, “A cost-efficient high-performance dynamic TCAM with hierarchical searching and shift redundancy architecture,” IEEE J. Solid-State Circuits, vol. 40, no. 1, pp. 245-253, Jan. 2005.
[33] H. Noda, K. Inoue, M. Kuroiwa, A. Amo, A. Hachisuka, H. J. Mattausch, T. Koide, S. Soeda, K. Dosaka, and K. Arinnoto, “A 143MHz 1.1W 4.5Mb dynamic TCAM with hierarchical searching and shift redundancy architecture, ” IEEE Int. Solid-State Circuits Conf., vol. 1, pp. 208-223, Feb. 2004.
[34] K.-H. Cheng, C.-H. Wei, and S.-Y. Jiang, “Static divided word matching line for low-power content addressable memory design,” in Proc. of IEEE Int. Symp. on Circuits and Systems, vol. 2, pp. 629-632, May 2004.
[35] K.-H. Cheng, C.-H. Wei, and Y.-W. Chen, “Design of low-power content-addressable memory cell,” in Proc. of IEEE Int. Symp. on Circuits and Systems, vol. 3, pp. 1447-1450, Dec. 2003.
[36] C.-S. Lin, J.-C. Chang, and B.-D. Liu, “A low-power precomputation-based fully parallel content-addressable memory,” IEEE J. of Solid-State Circuits, vol. 38, no. 4, pp. 654–662, April 2003.
[37] C.-S. Lin, K.-H. Chen, and B.-D. Liu, “Low-power and low-voltage fully parallel content-addressable memory,” in Proc. of IEEE Int. Symp. on Circuits and Systems, vol. 5, pp. 373-376, May 2003.
[38] H.-Y. Li, C.-C. Chen, J.-S. Wang, and C. Yeh, “An AND-type match-line scheme for high-performance energy-efficient content addressable memories,” IEEE J. of Solid State Circuits, vol. 41, no. 5, pp. 1108-1119, May 2006.
[39] J.-S. Wang, H.-Y. Li, C.-C. Chen, and C. Yeh, “An AND-type match-line scheme for energy-efficient content addressable memories,” IEEE Int. Solid-State Circuits Conf., vol. 1, pp. 464-610, Feb. 2005.
[40] B.-D. Yang, and L.-S. Kim, “A low-power CAM using pulsed NAND-NOR match-line and charge-recycling search-line driver,” IEEE J. of Solid State Circuits, vol. 40, no. 8, pp. 736-1744, Aug. 2005.
[41] J. Zhang, Y. Ye, and B. Liu, “A new mismatch-dependent low power technique with shadow match-line voltage-detecting scheme for CAMs,” in Proc. of IEEE Int. Symp. on Low Power Electronics and Design, pp. 135-138, Oct. 2006.
[42] S. Abdel-Hafeez, S. M Harb, and W. R. Eisenstadt, “Low-power content addressable memory with write/read and matched mask ports,” in Proc. of Int. Workshop on Power and Timing Modeling, Optimization and Simulation, pp. 75-85, Sept. 2007.
[43] T.-H. Kim, J. Liu, J. Keane, and C. H. Kim, “A 0.2 V, 480 kb subthreshold SRAM with 1 k cells per bitline for ultra-low-voltage computing,” IEEE J. Solid -State Circuits, vol. 43, no. 2, pp. 518-529, Feb. 2008.
[44] R. J. Baker, CMOS Circuit Design, Layout, and Simulation 2nd, New York: IEEE Press 2005.
[45] C.-C. Wang, C.-C. Huang, J.-H. Wu, I.-Y. Huang, C.-P. Li, Y.-C. Lee, and W.-J. Wu, “An implantable long-term bladder urine pressure measurement system with a 1-atm canceling instrumentation amplifier,” in Proc. of 2008 IEEE Int. Symp. on Circuits and Systems (ISCAS), pp. 2383-2386, May 2008.
[46] C.-C. Huang, J.-H. Wu, and C.-C. Wang, “A self-disable sense technique with differential NAND cell for content-addressable memories,” in Proc. of 2008 IEEE Int. Conf. on Electronics, Circuits and Systems (ICECS), Paper ID: 4489, accepted, Aug. 2008.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.143.9.115
論文開放下載的時間是 校外不公開

Your IP address is 3.143.9.115
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code