Responsive image
博碩士論文 etd-0715109-155619 詳細資訊
Title page for etd-0715109-155619
論文名稱
Title
軟性寬頻壓電式發電機之設計製作
Design and fabrication of flexible piezo-microgenerator with broadband width
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
175
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-06-18
繳交日期
Date of Submission
2009-07-15
關鍵字
Keywords
穩健最佳化設計、黃光壓印製程、生能系統、田口方法、振動分析、有限元素法、氧化鋅、寬頻、軟性基板
imprinting lithography, energy harvesting system, robust design, Taguch, finite element methods, ZnO, modal/harmonic analysis, flexible substrate, broad band width
統計
Statistics
本論文已被瀏覽 5632 次,被下載 29
The thesis/dissertation has been browsed 5632 times, has been downloaded 29 times.
中文摘要
本論文提出多層軟性基板與壓電材料結合之生能研究與應用,由於壓電材料具有高的機電轉換特性,配合適當的機械能傳遞結構與控制電路,成為擷取環境機械能的重要方法;藉由軟性基板與塊狀結構的設計,將單一發電元件並聯組成為多層寬頻軟性壓電發電系統,當發電系統運作時,能依外在環境驅動力及頻率的不同,反應出最佳的發電效益。首先利用有限元素軟體(ANSYS)中建立具壓電轉換器懸臂樑之有限元素模型,對此結構進行各層之模態分析,求得各層之結構之自然頻率與振型,其次再進行簡諧響應分析,進而擷取壓電薄膜之電壓輸出;分析結構使用三維耦合場立體元素(Solid5),將壓電薄膜 (氧化鋅:ZnO) 與軟性基板的結構幾何模型耦合在ㄧ起。此外也利用田口品質工程法進行軟性多層壓電生能系統幾何結構之參數設計。由此根據模擬分析之穩健化生能系統幾何形狀,利用黃光製程與轉印之技術製作出不同幾何尺寸之軟性基板,藉此改變軟性生能系統之自然頻率與振型,再將多層壓電軟性生能系統並聯組成一起,以獲得寬頻振型之目的,探討生能之效應。結果發現含塊狀結構之設計可有效提升機電轉換效率,而單一壓電發電元件測得最大開路電壓為2.25V,發電功率0.276μW。寬頻發電系統適用頻寬可介於50~500Hz之間的低頻率振動環境。此外,選用E值相對低的軟性基板也可有效提升發電元件之輸出電壓。
Abstract
In this study the relationship between the dynamic response of the flexible substrate and the power generation for energy harvesting system is proposed. High electro-mechanical transformation of piezoelectric materials, high efficient energy transfer of mechanical structure and controlled circuit make the piezoelectric generator a high performance. The devices of cantilevers with lump structures on the flexible substrate and piezoelectric film (ZnO) are designed. Then some individual layers of power generator are stocked in parallel to form a multi-layer system with a broad resonant band width. When the generator is operated in a wide frequency range vibration environment, the multi-layer piezoelectric films in the form of cantilever structures can induce current. First the finite element method for the piezoelectric cantilever beam is constructed by using ANSYS software. Both modal analysis and harmonic response analysis are performed to obtain the structural modal parameters and frequency response functions, respectively. Besides, the beam structure is modeled by 3D coupled field piezoelectric element. This research will apply Taguchi’s method to design including variations of dimensions and material properties for energy harvesting system. The flexible substrate is polymeric film (PET). Imprinting process is applied to transfer the simulated geometric configuration onto a flexible substrate to obtain a maximum power output. The results show the single devices can improve efficiently by using lump structures on the flexible substrate, the generator could achieve maximum OCV of 2.25V which is 0.276μW every centimeter squared when attached to a stable source of vibration. The multi-layer system can be used in 50~500Hz of low frequency environment. Furthermore, the output voltage (OCV) is upward when the flexible substrate with low Young’s modulus.
目次 Table of Contents
目錄 I
圖目錄 V
表目錄 XII
中文摘要 XIV
ABSTRACT XVI
第一章 緒論 1
1.1 前言 1
1.1.1 簡介: 1
1.1.2 研究動機與目的: 2
1.1.3 研究方法: 4
1.2 文獻回顧 5
1.2.1 研究背景: 5
1.2.2 壓電材料於微型發電機之應用: 6
1.2.3 其它類型微型發電機: 10
1.2.4 有限元素軟體應用於耦合場分析: 10
1.2.5 ZnO於微型壓電發電機之應用契機: 12
第二章 壓電原理及壓電材料 17
2.1 壓電原理 17
2.1.1 壓電效應: 17
2.1.2 正壓電效應 (direct piezoelectric effect): 17
2.1.3 逆壓電效應 (converse piezoelectric effect): 19
2.2 壓電材料的發展 21
2.2.1 壓電材料的相關應用: 22
第三章 壓電振動式發電機發電理論 29
3.1 機械能與電能之轉換 29
3.1.1 振動能量轉換模式: 29
3.1.2 線彈性壓電理論: 31
3.2 壓電參數 36
3.2.1 壓電參數之定義: 36
3.3 壓電理論解析 43
3.3.1 壓電薄材於d33模式之靜力作用: 44
3.3.2 壓電懸臂樑於d31模式之靜力作用: 46
第四章 軟性壓電式發電機之設計與有限元素分析 52
4.1 機電耦合結構之振動分析 52
4.1.1 耦合場之物理意義與有限元素分析之方法: 52
4.1.2 有限元素分析-機電耦合分析步驟: 53
4.1.3 壓電材料係數矩陣輸入順序設定: 55
4.1.4 ZnO壓電薄膜於d33模式之靜力分析: 56
4.1.5 無塊狀結構軟性壓電發電機於d31振動模式之模態分析: 61
4.1.6 含塊狀結構軟性壓電發電機於d31振動模式之簡諧分析: 64
4.2 田口法之穩健最佳化設計 70
4.2.1 田口法簡介: 70
4.2.2 軟性壓電式發電機之田口法設計分析: 71
4.2.3 含塊狀結構軟性壓電式發電機於d31振動模式之模態分析: 74
4.2.4 含塊狀結構軟性壓電式發電機於d33振動模式之簡諧分析: 77
4.2.5 模擬數據轉換S/N訊號雜音比及平均數: 89
4.2.6 變異數分析之穩健化參數組合: 90
4.2.7 穩健化參數配置之模擬驗證: 91
4.2.8 多層寬頻軟性壓電發電系統之結構配置: 96
第五章 軟性壓電式發電機之結構傳感性能分析 100
5.1 壓電複材結構傳感性能與發電量之關係 100
5.1.1 壓電複材結構內部應力分布與發電量之關係: 100
5.1.2 壓電複材結構內部應變分布與發電量之關係: 104
第六章 軟性壓電式發電機製作與發電性能量測 106
6.1 軟性壓電式發電機製作 106
6.1.1 軟性壓電式發電機複合結構製作: 106
6.1.2 含塊狀結構軟性壓電式發電機製作: 108
6.2. 軟性壓電式發電機之發電性能量測 112
6.2.1 軟性壓電式發電機於振動模式之發電性能量測: 112
6.2.2 軟性壓電式發電機於d31振動模式之發電性能量測: 114
第七章 結論與未來發展 140
7.1 結論 140
7.2 未來展望 142
參考文獻 144
參考文獻 References
1. 連益慶 、舒貽忠 ,“壓電振動能量擷取系統介紹”,工業材料雜誌,第263期,pp.130-139,2008年11月。
2. 蘇衍如,行政院2007年產業科技策略會議-聚焦能源科技,經濟部技術處「科技專案」-技術尖兵雜誌,第150期,pp. 2-3,2007年12月。
3. H. Sakamoto, S. Migiwa, S. Nouda, T. Asai, and Y. Maruyama, “Dynamic Magnetic Field Analysis And Optimum Design Of Small-Sized Wind Power Generator”, Environmentally Conscious Design and Inverse Manufacturing, Vol. 2003, pp. 272-276, 2003.
4. 蘇衍如,軟性電子-建構未來便利新科技,經濟部技術處「科技專案」-技術尖兵雜誌,第150期,pp. 4-5,2007年12月。
5. P. Glynne-Jones, S. P. Beeby and N. M. White, “Towards A Piezoelectric Vibration-Powered Microgenerator”, IEE Proc.-Sci. Mem Technol., Vol. 148, No. 2, pp. 69-72, 2001.
6. S. Roundy, E. S. Leland, J. Baker, E. Carleton, E. Reilly, E. Lai, B. Otis, J. M. Rabaey, P. K. Wright, “Improving Power Output For Vibration-Based Energy Scavengers”, Energy Harvesting & Conservation, Vol. 4, No. 1, pp. 28-36, 2005.
7. H. B. Fang, J. Q. Liu, Z. Y. Xu, L. Donga, L. Wang, D. Chen, B. C. Cai, Y. Liu, “Fabrication And Performance Of Mems-Based Piezoelectric Power Generator For Vibration Energy Harvesting”, Microelectronics Journal, Vol. 37, pp.1280-1284, 2006.
8. Y. Sun and J. A. Rogers, “Inorganic Semiconductors For Flexible Electronics”, InterScience ChemInform, Vol. 39, No. 12, pp. 1897-1916, 2007.
9. 林楠凱,“微壓電幫浦出力模擬研究,”國立中山大學碩博士校內論文,2007。
10. S. W. Chung and K. T. Chau, “A New Compliance Control Approach For Traveling-Wave Ultrasonic Motors”, Transactions on Industrial Electronics, Vol. 55, No. 1, pp. 302-311, 2008.
11. Y. H. Zhang, C. Yang, Z. H. Zhang, H. W. Lin, L. T. Liu, and T. L. Ren, “A Novel Pressure Microsensor With 30μm Thick Diaphragm And Meander Shaped Piezoresistors Partially Distributed On High Stress Bulk Silicon Region”, Sensors Journal, Vol. 7, No. 12, pp. 1742-1748, 2007.
12. S. Pourkamali, G. K. Ho, and F. Ayazi, “Low-Impedance Vhf And Uhf Capacitive Silicon Bulk Acoustic Wave Resonators—Part I: Concept And Fabrication”, IEEE Transactions on Electron Devices, Vol. 54, No. 8, pp. 2017-2023, 2007.
13. E. Minazara, D. Vasic, F. Costa, G. Poulin, “Piezoelectric Diaphragm For Vibration Energy Harvesting”, Ultrasonics, Vol. 44, No. 1, pp. e699-e703, 2006.
14. C. B. Williams, R. B. Yates, “Analysis Of A Micro-Electric Generator For Microsystems”, IEEE Solid-State Sensors and Actuators, Vol. 1, pp. 369-372, 1995.
15. G. H. Feng, J. C. Hung, “Optimal FOM Designed Piezoelectric Microgenerator With Energy Harvesting in a Wide Vibration Bandwidth”, 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systemans, pp. 511-514, 2007.
16. H. B. Fang, J. Q. Liu, Z. Y. Xu, L. Dong, D. Chen, B. C. Cai, Y. Liu, “A Mems-Based Piezoelectric Power Generator For Low Frequency Vibration Energy Harvesting”, Chinese Physics Letters, Vol. 23, No. 3, pp. 732-734, 2006.
17. J. H. Kim, C. J. Kang, Y. S. Kim, “A Disposable Polydimethylsiloxane-Based Diffuser Micropump Actuated By Piezoelectric-Disc”, Microelectronic Engineering, Vol. 71, No. 2, pp. 119-124, 2004.
18. L. M. Swallow, J. K. Luo, E. Siores, I. Patel and D. Dodds, “A Piezoelectric Fibre Composite Based Energy Harvesting Device For Potential Wearable Applications”, Electronic Journals, Smart Materials And Structures, Vol. 17, No. 2, pp. 1-7, 2008.
19. S. Kulkarni, E. Koukharenko, J. Tudor, S. Beeby, T. O’Donnell, S. Roy, “Fabrication And Test Of Integrated Micro-Scale Vibration Based Electromagnetic Generator”, IEEE Solid-State Sensors, Actuators and Microsystems Conference, pp. 879-882, 2007.
20. T. O’Donnell, C. Saha, S. Beeby, J. Tudor, “Scaling Effects For Electromagnetic Vibrational Power Generators”, Microsystem Technologies, Vol. 13, No. 11-12, pp. 1637-1645, 2007.
21. S. Kulkarni, E. Koukharenko, R. Torah, J. Tudor, S. Beeby, T. O’Donnell, S. Roy, “Design, Fabrication And Test Of Integrated Micro-Scale Vibration-Based Electromagnetic Generator”, Sensors and Actuators A, -Physical, pp. 1-7, 2007.
22. S. I. Kim, D. H. Lee, Y. P. Lee, Y. S. Chang, M. C. Park, “Low Frequency Properties Of Micro Power Generator Using A Gold Electroplated Coil And Magnet”, Current Applied Physics, Vol. 8, No. 2, pp. 138-141, 2008.
23. W. Ma, R. Zhu, L. Rufer, Y. Zohar, and M. Wong, “An Integrated Floating-Electrode Electric Microgenerator”, IEEE Journal of Microelectromechanical Systems, Vol. 16, No. 1, pp. 29-37, 2007.
24. C. Serre, A. Pe′rez-Rodrı′guez, N. Fondevilla, E. Martincic, S. Martı′nez, J. R. Morante, J. Montserrat, J. Esteve, “Design And Implementation Of Mechanical Resonators For Optimized Inertial Electromagnetic Microgenerators”, Microsystem Technologies, Online First, pp. 653- 658, 2007.
25. P. H. Wang, X. H. Dai, D. M. Fang, X. L. Zhao, “Design, Fabrication And Performance Of A New Vibration-Based Electromagnetic Micro Power Generator”, Microelectronics Journal, Vol. 38, No. 12, pp. 1175-1180, 2007.
26. P. D. Mitcheson, E. K. Reilly, T. Toh, P. K. Wright and E. M. Yeatman, “Performance Limits Of The Three Mems Intertial Energy Generator Transduction Types”, Electronic Journals Journal of Micromechanics and Microengineering, Vol. 17, No. 9, pp. S211-S216, 2007.
27. Z. Hadaš, V. Singule, Č. Ondrůšek, M. Kluge, “Simulation Of Vibration Power Generator”, Recent Advances in Mechatronics, Part 3, pp. 350-354, 2007.
28. P. H. Chen, S. C. Lin, “Wind-Powered Piezo Generators”, The 33rd Annual Conference of the IEEE Industrial Electronics Society (IECON), pp. 2163- 2168, 2007.
29. S. Im, S.N. Atluri, “Effect of a Piezo-Actuator On a Finitely Deformed Beam Subjected to General Loading”, AIAA Journal, Vol. 27, No. 12, pp. 1801-1807, 1989.
30. S. K. Ha, C. Keilers, and F.K. Chang, “Finite Element Analysis of Composite Structures Containing Distributed Piezoceramic Sensors and Actuators”, AIAA Journal, Vol. 30, No. 3, pp. 772-780, 1992.
31. 王柏村,陳柏宏,陳榮亮,“壓電薄膜感應器於懸臂樑實驗模態分析之有限元素模型驗證”,中華民國振動與噪音工程學會第十一屆研討會論文集, pp. 80-88,2003。
32. Y. Qin, X. Wang, Z.L. Wang, “Microfibre-Nanowire Hybrid Structure for Energy Scavenging”, Nature, Vol. 451, pp. 809-814, 2008.
33. J. Y. Kang, H. J. Kim, J. S. Kim, T. S. Kim, “Optimal Design of Piezoelectric Cantilever for a Micro Power Generator With Microbubble”, The 2nd Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine & Biology, pp. 424-427, 2002.
34. A. Kasyap, “A Theoretical and Experimental Study of Piezoelectric Composite Cantilever Beams for Energy Reclamation”, M.S. Thesis, AeMES Department, University of Florida, Gainesville, FL, 2002.
35. M. Krommer, “On the Correction of the Bernoulli-Euler Beam for Smart Piezoelectric Beams, " Smart Materials and Structures, Vol. 10, pp. 668-680, 2001.
36. H. P. Hu, J. G. Cao and Z. J. Cui, “Performance of a Piezoelectric Bimorph Harvester with Variable Width”, Journal of Mechanics, Vol. 23, pp. 197-202, 2007.
37. S. Jiang, X. Li, S. Guo, Y. Hu, J. Yang and Q. Jiang, “Performance of a Piezoelectric Bimorph for Scavenging Vibration Energy”, Smart Materials and Structures, Vol. 14, pp. 769-774, 2005.
38. S. Roundy, P. K. Wright, “A Piezoelectric Vibration Based Generator for Wireless Electronics”, Smart Materials and Structures, Vol. 13, pp. 1131-1142, 2004.
39. L. C. Rome, L. Flynn, E. M. Goldman and T. D. Yoo, “Generating Electricity While Walking with Loads, Science, Vol. 309, pp. 1725-1728, 2005.
40. H. A. Sodano, D. J. Inman and G. Park, A Review of Power Harvesting from Vibration Using Piezoelectric Materials, The Shock and Vibration Digest, Vol. 36, pp. 197-205, 2004.
41. N. M. White, P. Glynne-Jones and S. P. Beeby, “A Novel Thick-Film Piezoelectric Micro-Generator”, Smart Materials and Structures, Vol. 10, pp. 850-852, 2001.
42. 李育仁,“壓電樑自然頻率值用於壓電材料參數之擷取”, 國立中山大學碩博士校內論文,2004。
43. 鄭世裕,“壓電材料及其應用”,電子月刊,第七卷,第四期,pp. 162-169,2001年4月。
44. 鄭世裕,“壓電材料之發電器應用”,工業材料雜誌,第263期,pp. 111-120,2008年11月。
45. G.J. Wang, W.C. Yu, Y.H, Lin, H. Yang, “Modeling and Fabrication of a Piezoelectric Vibration-Induced Micro Power Generator”, Journal of Chinese Institute of Engineers, Vol. 29, No. 4, pp. 697-706, 2006.
46. 潘平彬 、陳勇 、駱英 ,“應用ANSYS分析聚合物和壓電相對1-3型PCM傳感性能的影響”,材料導報,第2期,pp.98-101,2004年2月。
47. Y.B. Jeon, R. Sood, J.H. Jeong and S.G. Kim, “MEMS Power Generator with Transverse Mode Thin Flim PZT”, Sensors Actuators A, Vol. 122, pp. 16-22, 2005.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.21.231.245
論文開放下載的時間是 校外不公開

Your IP address is 3.21.231.245
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code