Responsive image
博碩士論文 etd-0715110-161032 詳細資訊
Title page for etd-0715110-161032
論文名稱
Title
I 含鉻矽酸鋅釉藥塗佈於氧化鋁多晶基材之製程、微結構與光譜研究 II 雷射剝蝕在水中合成氧化鋯之奈米凝聚物 相變化、光性及微結構研究
I. On the processing, microstructure and optical properties of Cr-doped willemite-bearing glaze on polycrystalline alumina substrate II. Optical properties, microstructure and phase transformation of ZrO2 nanocondensates via pulse laser ablation condensation in water
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
97
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-06-08
繳交日期
Date of Submission
2010-07-15
關鍵字
Keywords
奈米凝聚物、氧化鋯、雷射剝蝕、矽酸鋅、陰極光偵測系統、掃瞄式電子顯微鏡、拉曼光譜、穿透式電子顯微鏡
Raman, Zirconia, nanocondensates, TEM, willemite, CL, SEM, PLAL
統計
Statistics
本論文已被瀏覽 5701 次,被下載 0
The thesis/dissertation has been browsed 5701 times, has been downloaded 0 times.
中文摘要
第一部分
摻雜鉻(Cr3+)之矽酸鋅(Zn2SiO4)釉藥塗佈於氧化鋁(Al2O3)多晶基材上,經1270 ℃熔釉與1080 ℃過冷失透(devitrification)之二階段熱處理後,以偏光與掃瞄式電子顯微鏡觀察,發現在釉層表面會產生針狀的矽酸鋅結晶與非晶態之玻璃液相,鉻則大部分分佈於非晶質玻璃相中,且矽酸鋅會隨著鉻含量增加而抑制針狀結晶的生長。用解析穿透式電子顯微鏡觀察釉層與氧化鋁基板的界面,發現氧化鋁多晶燒結體之晶界為熱處理時擴散之捷徑,使得鋁元素沿之向外擴散至釉層,造成鋅鋁氧三元素反應,導致界面處化學反應並且異質成核,所以出現緊密堆疊且厚度達微米級之鋅鋁尖晶石的反應層,因而阻擋釉層元素向內擴散至氧化鋁基材中,此點顯示含鉻矽酸鋅釉藥是氧化鋁多晶材料理想的接合劑。此外,鋅鋁尖晶石結晶的成核與生長能力會受到含鉻量額外的影響,鉻含量愈多,結晶性會降低。造成矽酸鋅與鋅鋁尖晶石結晶性的改變,主要是因Cr3+增加使矽酸鋅釉層液相中,SiO4和ZnO4單體的接合更為順暢,因此降低過冷液相自由能使之不易結晶,與成核位置的減少較無關係。根據陰極光導致螢光(CL)光譜對矽酸鋅表面之分析,摻雜0.1%鉻的結晶釉於極低溫時(6 K)會在455 nm附近發光;摻雜1%的鉻的結晶釉則於同樣溫度發生約470 nm波長的光,發光光譜的紅偏移是由於鉻離子佔據格隙四面體或八面體,使晶格產生扭曲,減少晶格內部應力。

第二部分
在水溶液中利用Nd-YAG雷射剝蝕合成具懸浮奈米氧化鋯粉體(ZrO2)之水溶液,經減壓濃縮與離心機把氧化鋯之奈米顆粒萃取出來去分析其結構、相變化與不同配位原子振動模式。我們發現當雷射能量為700 mJ/pulse時,奈米顆粒以單斜晶系(monoclinic)為主,另含有微量之正方(tetragonal)及立方(cubic)晶系的氧化鋯;雷射能量增加至800 mJ/pulse時,正方(t-ZrO2)及立方(c-ZrO2)晶系的氧化鋯會增多。其是因雷射能量的提升使單位面積能量密度增加,在更高溫高壓的環境下合成,然後遇水急冷,t-或c-ZrO2沒時間由介穩相(metastable phase)相變至m-ZrO2。另外,奈米顆粒的氧化鋯在以PLAL的方法合成後,因為H+、OH-和氧空缺的存在,形同異質原子摻雜於其中,使得能隙相較於理論計算的氧化鋯塊材而言會降低。在穿透式電子顯微鏡下觀察氧化鋯表面以及奈米顆粒內所含有的缺陷及微結構情形,發現大部分t-m的相變化僅在合成的瞬間發生,且氧化鋯奈米顆粒內不易有雙晶或疊差(twins/faults)。造成此結果的原因與OH基有很大的關係,因PLAL是在水中進行,所以合成瞬間會有OH基附著於顆粒的表面並進而與氧空缺反應,使得氧空缺減少,而無法穩定介穩相t-, c-ZrO2的存在,因此大部分都是m-ZrO2。而因奈米顆粒很小(大部分小於50 nm),所以其可被視為單晶域(single domain),在顆粒內的成核位置鮮少使其可能在瞬間就已達到飽和,沒機會讓twins/faults產生。但是OH基卻讓顆粒的表面出現了許多階檻(ledges),反而藉由此來讓顆粒內部應力紓緩。此外,因氧化鋯是在動態的雷射剝蝕下合成,會使其受到非靜水狀態(non-hydrostatic)的壓力,t-m之間的相變化臨界顆粒大小也會隨之由30 nm降到20 nm以下。
Abstract
英文摘要為none
目次 Table of Contents
目錄
摘要…………………………………………………………………………………...I
目錄..............................................................................................................................III
圖目錄………………………………………………………………………………..VI

Part I
一、研究動機……………………………………………………………………1
二、文獻回顧……………………………………………………………………2
2-1. 矽酸鋅結晶的溶解行為與微結構……………………………………2
2-2. 矽酸鋅結晶的光譜……………………………………………………3
2-3. 寄主開裂癒合機制……………………………………………………4
三、研究方法及步驟…………………………………………………………….5
3-1. X-ray繞射分析(XRD)…………………………………………………5
3-2. 拉曼光譜分析(Raman)………………………………………………..5
3-3. 陰極光偵測系統(CL)…………………………………………………6
3-4. 場發式掃瞄式電子顯微鏡(SEM)…………………………………….6
3-5. 雙束型聚焦離子束(FIB)……………………………………………...6
3-6. 解析型穿透式電子顯微鏡(AEM)……………………………………6
四、實驗結果…………………………………………………………………....7
(一)釉層俯視面之觀察…………………………………………………….7
4-1. 偏光顯微鏡(OM)..………………………………………………7
4-2. X-ray繞射儀分析(XRD)………………………………………...7
4-3. 拉曼光譜(Raman)………………………………………………..7
4-4. 陰極射線光譜(CL)………………………………………………8
4-5. 掃瞄式電子顯微鏡(SEI)………………………………………...8
(二)釉層與氧化鋁界面處之橫截面觀察………………………………….9
4-6. 橫截面之偏光顯微鏡觀察(OM)………………………………..9
4-7. 掃瞄式電子顯微鏡(BEI)……………………………………....10
4-8. 穿透式電子顯微鏡(AEM)……………………………………..10
五、討論…………………………………………………………………………12
5-1. 鉻對結晶性的影響…………………………………………………..12
5-2. 鉻對發光光譜的影響………………………………………………..13
5-3. 釉層與氧化鋁層界面之擴散、成核與生長………………………...14
六、結論…………………………………………………………………………16
七、參考文獻……………………………………………………………………17

Part II
一、研究動機……………………………………………………………………39
二、文獻回顧……………………………………………………………………40
2-1. 在水中進行雷射剝蝕(PLAL)……………………………………….40
2-2. 氧化鋯的基本性質…………………………………………………..40
2-3. 氧化鋯的奈米顆粒相變與聚簇行為………………………………..42
三、研究方法與步驟…………………………………………………………...44
3-1. X-ray繞射分析(XRD)………………………………………………..44
3-2. 拉曼光譜分析(Raman)………………………………………………44
3-3. 霍式轉換紅外光譜儀(FTIR)………………………………………..44
3-4. 場發式掃瞄式電子顯微鏡(SEM)……………….…………………..45
3-5. X光光電子能譜儀(XPS)………………………….…………………45
3-6. UV-Vis吸收光譜…………………………….……………………….45
3-7. 解析型穿透式電子顯微鏡(AEM)…………………………………..45
四、實驗結果…………………………………………………………………..47
4-1. X-ray繞射儀分析(XRD)……………………………………………..47
4-2. 拉曼光譜分析(Raman)………………………………………………47
4-3. 霍式轉換紅外光譜儀分析(FTIR)…………………………………..49
4-4. UV-Vis吸收光譜…………………………………………………….49
4-5. X-ray光電子能譜儀(XPS)…………………………………………..50
4-6. 掃瞄式電子顯微鏡(SEM)…………………………………………..51
4-7. 穿透式電子顯微鏡之觀察(AEM)…………………………………..51
五、討論………………………………………………………………………..54
5-1. OH基的影響…………………………………………………………54
5-2. 相變化之臨界顆粒粒徑……………………………………………..55
5-3. 相變化與缺陷分析…………………………………………………..56
5-4. 能隙改變……………………………………………………………..57
六、結論………………………………………………………………………...59
七、參考文獻…………………………………………………………………...60
參考文獻 References
Part I.
[1] 孫超,窯火中的創造,藝術家出版社(2001)
[2] Sun, C., Kuan, C., Kao, F.J., Wang, Y.M., Chen, J.C., Chang, C.C. and Shen, P.
(2004) “On the nucleation, growth and impingement of plate-like α-Zn2SiO4
spherulites in glaze layer: a confocal and electron microscopic study” Mater. Sci.
Eng., A 379, pp. 327-333.
[3] Hwang, S.L., Yui, T.F., Chu, H.T., Shen, P., Schertl, H.P., Zhang, R.Y. and Liou, J.G. (2007) “On the origin of oriented rutile needles in garnet from UHP eclogites” J. Metamorph. Geol., 25, pp. 349-362.
[4] Lin, C.C. and Shen, P. (1993a) “Directional dissolution kinetics of willemite”
Geochimica et Cosmochimica Acta, 57, pp. 27-35.
[5] Lin, C.C. and Shen, P. (1993b) “Role of screw axes in dissolution of willemite”
Geochimica et Cosmochimica Acta, 57, pp. 1649-1655.
[6] Gilman, J.J., Johnston, W.G. and Sears, G.W. (1958) “Dislocation etch pit
formation in lithium fluoride” J. Appl. Phys., 29, pp. 747-754.
[7] Ives, M.B. and Plewes, J.T. (1965) “Inhibited dissolution of {100} surfaces of
single crystals of lithium fluoride” J. Chem. Phys., 42, pp. 293-296.
[8] Sangwal, K. (1988) “Etching of crystals ­ theory, experiment, and application”
Acta Cryst., A44, pp. 233
[9] Lin, C.C. and Shen, P. (1995) “Incubation time of etch pits at dislocation
outcrops” Geochimica et Cosmochimica Acta, 59, pp. 2955-2963.
[10] Chang, C.C. and Shen, P. (2000) “Thermal-etching development of α-Zn2SiO4 polycrystals: effects of lattice imperfections, Mn-dopant and capillary force” Mater. Sci. Eng., A 288, pp. 42-46.
[11] Kang, Y.C. and Park, S.B. (2000) “Zn2SiO4:Mn phosphor particles prepared by spray pyrolysis using a filter expansion aerosol generator” Materials Research Bulletion, 35, pp. 1143-1151.
[12] Wan, J., Wang, Z., Chen, X., Mu, L., Yu, W. and Qian, Y. (2006) “Controlled synthesis and relationship between luminescent properties and shape/crystal structure of Zn2SiO4:Mn2+ phosphor” J. Luminescence, 121, pp. 32-38.
[13] Brunold, Thomas C., Giidel, Hans U. and Cavalli, Enrico (1996) “Absorption and luminescence spectroscopy of Zn2SiO4 willemite crystals doped with Co2+” Chem. Phys. Lett., 252, pp. 112-120.
[14] Abritta, T. and Blak, F. H. (1991) “Luminescence study of ZnGa2O4 :Co2+ ” J. of Luminescence, 48/49, pp. 558
[15] Donegan, J.F., Anderson, F.G., Bergin, F.J., Glynn, T.J. and Lmbusch, G.F. (1992) “Optical and magnetic-circula-dichroism–optically-detected-magnetic-resonance study of the Co2+ ion in LiGa5O8” Phys. Rev., B45, pp. 563-573.
[16] Cavalli, E., Belletti, A. and Zannoni, E. (1995) “Luminescence of Fe-doped willemite single crystals” J. of Solid State Chemistry, 117, pp. 16-20.
[17] Lin, C.C. and Shen, P. (1994a) “Sol-gel synthesis of zinc orthosilicate” J. of Noncrystalline Solids, 171, pp. 281-289.
[18] Lin, C.C. and Shen, P. (1994b) “The role of Ti4+ on the structure and transformations of gel-produced Zn2SiO4” J. of Solid State Chem., 112, pp. 381-386.
[19] Hwang, S.L., Shen, P., Yui, T.F. and Chu, H.T. (2007) “TiO2 nanoparticle trails in garnet: implications of inclusion pressure-induced microcracks and spontaneous metamorphic-reaction healing during exhumation” J. Metamorphic Geology, 25, pp. 451-460.
[20] Putnis, A. and Putnis, C.V. (2007) “The mechanism of reequilibration of solids in the presence of a fluid phase” J. of Solid State Chem., 180, pp. 1783-1786.
[21] Hansson, R., Zhao, B., Hayes, P. C. and Jak, E. (2005) “A reinvestigation of phase equilibria in the system Al2O3-SiO2-ZnO” Metallurgical and Materials Transactions B., 36B, pp. 187-193.
[22] Lin, C.C. and Shen, P. (1994) “Nonisothermal site saturation during transformations of Zn2SiO4” J. of Solid State Chem., 112, pp. 387-391.
[23] Chakradhar, R.P. Sreekanth, Nagabhushana, B.M., Chandrappa, G.T., Ramesh, K.P. and Rao, J.L. (2004) “Solution combustion derived nanocrystalline Zn2SiO4:Mn phosphors: A spectroscopic view” J. of Chemical Physics, 121, pp. 10250-10259.
[24] Zhang, D.H., Xue, Z.Y. and Wang, Q.P. (2002) “The mechanisms of blue emission from ZnO films deposited on glass substrate by r.f. magnetron sputtering” J. Phys., D35, 2837-2840.
[25] Xu, X., Wang, P., Qi, Z., Ming, H., Xu, J., Liu, H., Shi, C., Lu, G. and Ge, W. (2003) “Formation mechanism of Zn2SiO4 crystal and amorphous SiO2 in ZnO/Si system” J. Phys. : Condens. Matter., 15, pp. L607-L613.
[26] Shannon, R. D. (1976) “Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides” Acta Cryst., 32, pp. 751-767.
[27] Kuromitsu, Y., Yoshida, H., Takede, H. and Morinaga, K. (1997) “Interaction between alumina and binary glasses” J. Am. Ceram. Soc., 80, pp. 1583-1587.
[28] Wagner, C. (1933) “Contributions to the theory of surface colouring of metals” Z. Phys. Chem., B21, pp. 25-41.
[29] Engberg, C. J. and Zehms, E. H. (1958) “Thermal expansion of Al2O3, BeO, MgO, B4C, SiC, and TiC above 1000°C” J. Am. Ceram. Soc., 42, pp. 300-305.
[30] White, G. K. and Roberts, R. B. (1988) “Thermal expansion of willemite, Zn2SiO4” Aust. J. Phys., 41, pp. 791-795.
[31] Omar, A. A. and Abdel-Hameed, S. A. M. (2009) “Crystallization of calcium zinc aluminosilicate glasses” Ceram., 53, pp. 171-179.

Part II.
[1] Hannink, R. H. J., Kelly, P. M. and Muddle, B. C. (2000) “Transformation toughening in zirconia-containing ceramics” J. Am. Ceram. Soc., 83, pp. 461-487.
[2] 蔡孟修(2005) “雷射融蝕凝聚二氧化鈦與二氧化鋯:奈米顆粒之緻密與聚簇行為借鏡” 國立中山大學93學年度博士論文
[3] Shen, P. and Lee, W. H. (2001) “(111)-specific coalescence twinning and martensitic transformation of tetragonal ZrO2 condensates” Nano Letters, 1, pp. 707-711.
[4] Yang, G. W. (2007) “Laser ablation in liquids: Applications in the synthesis of nanocrystals” Progress in Materials Science, 52, pp. 648-698.
[5] Saito, K., Takatai, K., Sakka, T. and Ogata, Y. (2002) “Observation of the light emitting region produced by pulsed laser irradiation to a solid–liquid interface” Appl. Surf. Sci., 197-198, pp. 56-60.
[6] Barsch, N., Jakobi, J., Weiler, S. and Barcikowski, S. (2009) “Pure colloidal metal and ceramic nanoparticles from high-power picosecond laser ablation in water and acetone” Nanotechnology, 20, pp. 445603-445612.
[7] Stevens, R. (1986) “Zirconia and zirconia ceramics” Magnesium Elektron Ltd.
[8] Heuer, A. H. (1987) “Transformation toughening in ZrO2-containing ceramics” J. Am. Ceram. Soc. 70, pp. 689-698.
[9] Robert, C. L., Ansart, F., Deloget, C., Gaudon, M. and Rousset, A. (2003) “Dense yttria stabilized zirconia: sintering and microstructure” Ceramics International, 29, pp. 151-158.
[10] Ramamoorthy, R., Sundararaman, D. and Ramasamy, S. (1999) “Ionic conductivity studies of ultrafine-grained yttria stabilized zirconia polymorphs” Solid State Ionics, 123, pp. 271-278.
[11] Green, D. J., Hannink, R. H. J. and Swain, M. V. (1989) “Transformation toughening of ceramics”, (CRC Press: Boca Raton, FL). pp. 1-232.
[12] Stefanic, G., Music, S., Grzeta, B., Popovic, S. and Sekulic, A.(1998) “Influence of pH on the stability of low temperature t-ZrO2” J. Phys. Chem. Solids, 59, pp. 879-885.
[13] Garvie, R. C. (1965) “The occurrence of metastable tetragonal zirconia as crystallite size effect” J. Phys. Chem. 69, pp. 1238-1243.
[14] Li, M., Feng, Z., Xiong, G., Ying, P., Xin, Q. and Li, C. (2001) “Phase transformation in the surface region of zirconia detected by UV Raman spectroscopy” J. Phys. Chem. B, 105, pp. 8107-8111.
[15] Tan, D., Teng, Y., Liu, Y., Zhuang, Y. and Qiu, J. (2009) “Preparation of zirconia nanoparticles by pulsed laser ablation in liquid” Chemistry Letters, 38, pp. 1102-1103.
[16] Perry, C. H., Lu, F., Liu, D. W. and Alzyab, B. (1990) “Phonons and phase transitions in zirconia” J. Raman Spectrosc. 21, pp. 577-584.
[17] Michael, D., Perez, M., Jorba, Y. and Collongues, R. (1976) “Study by Raman spectroscopy of order-disorder phenomena occurring in some binary oxides with fluorite-related structures” J. Raman Spectrosc. 5, pp. 163-180.
[18] Miciukiewicz, J., Mang, T. and Knozinger, H. (1995) “Raman spectroscopy characterization of molybdena supported on titania-zirconia mixed oxide” Applied Catalysis A, 122, pp. 151-159.
[19] Shi, L., Tin, K. C. and Wong, N. B. (1999) “Thermal stability of zirconia membranes” J. Mater. Science, 34, pp. 3367-3374.
[20] Kontoyannis, C. G. and Orkoula, M. (1994) “Quantitative determination of the cubic, tetragonal and monoclinic phases in partially stabilized zirconias by Raman spectroscopy” J. Mater. Science, 29, pp. 5316-5320.
[21] Phillippi, C. M. and Mazdiyasni, K. S. (1971) “Infrared and Raman spectra of zirconia polymorphs” J. Am. Ceram. Soc, 54, pp. 254-258.
[22] Bolis, V., Magnacca, G., Cerrato, G. and Morterra, C. (2001) “Microcalorimetric and IR spectroscopy study of the room temperature adsorption of CO2 on pure and sulphated t-ZrO2” Thermochimica Acta, 379, pp. 147-161.
[23] Quyang, F. and Yao, S. (2000) “Infrared study of ZrO2 surface sites using adsorbed probe molecules. 2. dimethyl ether adsorption” J. Phys. Chem. B, 104, pp. 11253-11257.
[24] Morant, C., Sanz, J. M., Galan, L., Soriano, L. and Rueda, F. (1989) “An XPS study of the interaction of oxygen with zirconium” Surf. Sci., 218, pp. 331-345.
[25] Tsunekawa, S., Asami, K., Ito, S., Yashima, M. and Sugimoto, T. (2005) “XPS study of the phase transition in pure zirconium oxide nanocrystallites” Appl. Surf. Sci., 252, pp. 1651-1656.
[26] Dupin, J. C., Gonbeau, D., Vinatier, P. and Levasseur, A. (2000) “Systematic XPS studies of metal oxides, hydroxides and peroxides” Phys. Chem. Chem. Phys., 2, pp. 1319-1324.
[27] Hwang, S. L., Shen, P., Yui, T. F. and Chu, H. T. (2010) “On the coherency-controlled growth habit of precipitates in minerals” J. Appl. Cryst., 43, pp. 417-428.
[28] Guo, X. (1999) “On the degradation of zirconia ceramics during low-temperature annealing in water or water vapor” J. Phys. Chem. Solids, 60, pp. 539-546.
[29] Chang, S. M. and Doong, R. A. (2005) “Chemical-composition-dependent metastability of tetragonal ZrO2 in sol-gel-derived films under different calcination conditions” Chem. Mater., 17, pp. 4837-4844.
[30] Huang, C. N., Chen, S. Y., Zheng, Y. and Shen, P. (2009) “Water-driven assembly of laser ablation-induced Au condensates as mesomorphic nano- and micro-tubes” Nanoscale Res. Lett., 4, pp. 1064-1072.
[31] Lin, C. H., Shen, P., Chen, S. Y. and Zheng, Y (2008) “Condensation and crystallization of amorphous/lamellar chromium sesquioxide” J. Phys. Chem. C, 112, pp. 17559-17566.
[32] Liu, I. L., Shen, P. and Chen, S. Y. (2010) “Formation of ultrafine and dense α-Al2O3 nanoparticles via kinetic phase change in a dynamic process” J. Nanopart. Res. (in press)
[33] Shukla, S. and Seal, S. (2005) “Mechanisms of room temperature metastable tetragonal phase stabilisation in zirconia” Int. Mater. Rev., 50, pp. 45-64.
[34] Garvie, R. C. (1978) “Stabilizatin of the tetragonal structure in zirconia microcrystals” J. Phys. Chem., 82, pp. 218-224.
[35] Chraska, T., King, A. H. and Berndt, C. C. (2000) “On the size-dependent phase transformation in nanoparticulate zirconia” Mater. Sci. Eng. A, 286, pp. 169-178.
[36] Liu, L. G. and Bassett, W. A. (1986b) “Elements, oxides, and silicates: High-pressure phases with implications for the earth’s interior” (Oxford Univ. Press, New York), pp. 177.
[37] Vallet-Regí, M., Nicolopoulos, S., Román, J., Martínez, J. L. and González-Calbet, J. M. (1997) “Structure characterization of ZrO2 nanoparticles obtained by aerosol pyrolysis” J. Mater. Chem., 7, pp. 1017-1021.
[38] Mitsuhashi, T., Ichihara, M. and Tatsuke, U. (1974) “Characterization and stabilization of metastable tetragonal ZrO2” J. Am. Ceram. Soc., 57, pp. 97-101.
[39] Christensen, A. and Carter, A. (1998) “First-principles study of the surfaces of zirconia” Phys. Rev. B, 54, pp. 8050-8064.
[40] Králik, B., Chang, E. K. and Louie, S. G. (1998) “Structural properties and quasiparticle band structure of zirconia” Physical Review B, 57, pp. 7027-7036.
[41] Ciuparu, D., Ensuque, A., Shafeev, G. and Bozon-Verduraz, F. (2000) “Synthesis and apparent bandgap of nanophase zirconia” J. Mater. Science Letters, 19, pp. 931-933.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.144.96.159
論文開放下載的時間是 校外不公開

Your IP address is 3.144.96.159
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code