Responsive image
博碩士論文 etd-0715110-235228 詳細資訊
Title page for etd-0715110-235228
論文名稱
Title
真空、大氣、水溶液(含/不含氫氧化鈉)環境下雷射剝蝕合成奈米氧化鋁凝聚物之粗化/聚簇與相變化行為
Coarsening/coalescence and phase change of Al2O3 nanoparticles by PLA in air, vacuum and aqueous solutions with/without NaOH
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
186
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-06-10
繳交日期
Date of Submission
2010-07-15
關鍵字
Keywords
氧化鋁、表面擴散、層狀結構、脈衝雷射剝蝕、氫氧化鋁、鋁酸鈉
lamellar, surface diffusion, aluminum oxide, NaAlO2, bayerite, PLA
統計
Statistics
本論文已被瀏覽 5751 次,被下載 0
The thesis/dissertation has been browsed 5751 times, has been downloaded 0 times.
中文摘要
本實驗利用高能量的脈衝雷射剝蝕 (pulse laser ablation) 金屬鋁鈀,在同樣
的功率下 (1.8x1011 W/cm2),分別在大氣、真空、純水溶液、以及添加氫氧化鈉
的水溶液環境下合成氧化鋁的奈米凝聚物、水合物以及鋁酸鈉。除了利用X-光
繞射、掃描/穿透式電子顯微鏡與能量散射光譜儀觀察晶粒的成分、形狀大小、
相變化行為和晶向關係外,同時也利用拉曼、吸收光譜、霍式紅外線光譜與X
射線電子能譜儀研究其內應力、能隙大小以及價電子數。
首先,在類尖晶石結構γ-Al2O3 奈米顆粒之初期聚簇/粗化動力學這部份的研
究,是為了驗證雷射剝蝕形成之γ-Al2O3 奈米凝聚物,會在攝氏溫度約1000oC 左
右進行聚簇/粗化的行為,因而利用氮氣等溫吸附/脫附儀(BET)在1100oC~1400oC
的溫度區間及不同燒結時間下量測γ-Al2O3 奈米顆粒之比表面積,並利用阿瑞尼
亞方程式進一步估算出活化能,得到γ-Al2O3 奈米顆粒之初期聚簇/粗化的行為屬
表面擴散(surface diffusion),以及顆粒之重新排序,以降低整體表面能。
在真空中進行雷射剝蝕金屬鋁鈀的實驗中,通以高純度氧氣,流量20 sccm,
則合成出粒徑極小,約為5 奈米大小的α-Al2O3 凝聚物。在穿透式電鏡的觀察下,
發現一開始多為非晶質的氧化鋁,但具有平面間距為0.234-0.236 奈米和
0.353-0.359 奈米的波浪層狀(lamellar)結構,趨近於γ-Al2O3 之(311)與α-Al2O3 之
(011 2),經過電子束照射下,漸漸形成結晶相的γ-與α-Al2O3,因此可推測結晶相
的γ-與α-Al2O3 是以此種波浪層狀結構為核種(nuclei)進而生長結晶。而除了上述
由層狀結構合成α相的氧化鋁,γ-Al2O3 也會因為電子束持續照射而相變化形成α-Al2O3,相對於波浪層狀結構合成的α-Al2O3 較為穩定,並依循[110]γ//[2110]α;
(111) γ//(0114)α的晶向關係。拉曼實驗顯示Al2O3 所有的峰值都會藍移(blue
shift),內應力高達15 GPa,吸收光譜則顯示Al2O3 凝聚物之能隙大幅降低至
3.7eV,在氧化鋁研磨料以及光觸媒領域上可望提供相當廣泛的應用。
此外,在純水溶液進行雷射剝蝕金屬鋁鈀的的研究中,則合成晶粒大小約為
10-100 奈米,形狀為球型,摻雜(H+,Al2+)的γ與θ-Al2O3,並由於(H+,Al2+)的摻
雜填入以及取代Al3+的四面體及八面體位置,造成電荷及體積補償效應(charge
and volume compensating effect)。穿透式電子顯微鏡觀察,發現這些凝聚物具有
差排、疊差以及雙晶等缺陷組織。再者,當γ-Al2O3 大到100 奈米以上,會形成
立方八面體(cuboctahedra) , 並促始γ→θ 麻田散鐵相變化的進行, 並依循
(3 11 )θ//(0 2 2)γ; (0 2 4 )θ//(3 11)γ特定的晶向關係。此外,利用拉曼光譜可測得所
合成摻雜(H+,Al2+)之γ與θ-Al2O3 內應力可高達10 GPa。
將摻雜(H+,Al2+)的γ與θ-Al2O3 於同樣純水溶液室溫下放置半年,則γ與
θ-Al2O3 與水中OH-鍵結合成同樣緻密度高,形狀為片狀堆疊、柱狀的氫氧化鋁
(Al(OH)3, bayerite 簡稱b),粒徑可高達200~400 奈米。而在穿透式電子顯微鏡的
光束照射下,氫氧化鋁不耐高溫而進行脫水反應又還原成γ-Al2O3,在電鏡晶格
影像中,可歸納分析出氫氧化鋁喜好以(001)平面片狀堆疊生長,脫水後則為
γ-Al2O3 最緊密堆積的(111)平面,因此可得(100)b//(011)γ;[001]b//[111]γ 的晶向關
係。並由X 光能譜的實驗結果印證水溶液室溫時效處理造成了(H+,Al+,Al2+)
共同摻雜的氫氧化鋁與γ-氧化鋁複合結構。
最後,利用金屬鋁鈀在含有NaOH 的水溶液中進行雷射剝蝕實驗,由X 光
繞射的結果顯示合成出含水以及不含水的鋁酸鈉(NaAlO2.5/4H2O 與
β-NaAlO2),並且在X-光繞射(CuKα) 2θ為54-85°間發現有一個相當寬的峰,是
由非晶質的氧化鋁所貢獻,換算成其平面間距符合AlO4 的四面體鍵長間距,因
此可推測結晶的鋁酸鈉是由非晶質氧化鋁的AlO4 四面體為核種,共用角落並選擇最密堆積平面排列生長而成,以降低整體介面能。經由穿透式電子顯微鏡的觀
察發現鋁酸鈉(簡稱N)與γ相的氧化鋁,依循( 2 22) γ//(002)N;(02 2) γ//(110)N;
[211]γ//[110]N 的晶向關係緊密貼合生長,進而產生大量的差排以及疊差。另外,
霍式紅外線光譜的數據,可估計得到鋁酸鈉晶格組成多面體的內應力高達
40 GPa,另一方面由電鏡晶格影像,則得到γ相的氧化鋁晶格整體之內應力僅約
為7 GPa.
Abstract
This research is focused on the synthesis and characterization (BET, transmission
electron microscopy and optical spectroscopy) of aluminum oxide condensates via a
static sintering process and dynamic process of pulse laser ablation
(PLA) and pulse laser ablation in liquid (PLAL).
For a start, the static route of an onset coarsening-coalescence event based on the
incubation time of cylindrical mesopore formation and a significant decrease of
specific surface area by 50% and 70% relative to the dry pressed samples was
determined by N2 adsorption-desorption hysteresis isotherm for two Al2O3 powders
having 50 and 10 nm in diameter respectively on an average and with γ-type related
structures, i.e. γ- and its distortion derivatives δ- and/or θ-types with {100}/{111}
facets and twinning according to transmission electron microscopy. In the
temperature range of 1100 to 1400oC, both powders underwent onset
coarsening-coalescence before reconstructive transformation to form the stable α-type.
The apparent activation energy for such a rapid coarsening-coalescence event was
estimated as 241 ± 18 and 119 ± 19 kJ/mol, for 50 and 10 nm-sized particles,
respectively indicating easier surface diffusion and particle movement for the latter.
The size dependence of surface relaxation and onset coarsening-coalescence of the
γ−type related Al2O3 nanoparticles agrees with their recrystallization-repacking upon
electron irradiation and accounts for their assembly into nano chain aggregates or a
close packed manner under the radiant heating effect in a dynamic laser ablation
process.
In addition, ultrafine (5 nm) Al2O3 nanoparticles having a predominant α-type
structure and with an internal compressive stress up to ca. 15 GPa were synthesized by pulsed laser ablation on Al target under a very high peak power density (1.8x1011
W/cm2) with oxygen flow in vacuum. The ultrafine α-Al2O3 was alternatively
formed from the minor γ-Al2O3 nanocondensates upon electron irradiation. In such a
case, the polymorphs follow a special crystallographic relationship [110]γ//[2110]α;
(111) γ//(0114)α with a mixed mismatch strain yet nonparallel close packed planes
indicating a reconstructive type transformation. The formation of metastable
α-Al2O3 in the dynamic processes can be rationalized by the kinetic phase change
from the amorphous lamellar and/or γ-Al2O3 depending on their free energy versus
cell volume curves. The dense and ultrafine sized Al2O3 polymorphs with a rather
low minimum band gap of 3.7 eV shed light on their natural occurrence in dynamic
settings and abrasive as well as catalytic/optoelectronic applications.
Furthmore, pulsed laser ablation in water under a high peak power density of 1.8
× 1011 W/cm2 using Q-switch mode and 1064 nm excitation was used to fabricate
(H+,Al2+)-codoped Al2O3 nanocondensates having γ- and its derivative θ-type
structure as characterized by electron microscopy and spectroscopy. The as-formed γ-
and θ-Al2O3 nanocondensates are mainly 10 to 100 nm in size and have a significant
internal compressive stress (> 10 GPa) according to cell parameters and vibrational
spectroscopy, due to a significant shock loading effect in water. The γ-Al2O3
nanocondensates are nearly spherical in shape but became cubo-octahedra when grew
up to ca. 100 nm to exhibit more facets as a result of martensitic γ→θ transformation
following the crystallographic relationship (3 11 )θ //(02 2)γ; (0 2 4 )θ//(3 11)γ. The
formation of dense and (H+,Al2+)-codoped γ/θ-Al2O3 rather than aluminum hydrates
sheds light on the favored phases of the Al2O3-H2O binary at high temperature and
pressure conditions in natural dynamic settings. The nanocondensates thus formed
have a much lower minimum band gap (5.2 eV) than bulk α-Al2O3 for potential optocatalytic applications.
Moreover, the Al2O3 nanocondensates of spinel-type related structures, i.e. γ- and
θ- type with a significant internal compressive stress via pulsed laser ablation in water
were subjected to prolonged dwelling in water to form columnar bayerite plates for
further transformation as platy γ-Al2O3. Transmission electron microscopic
observations indicated the γ-Al2O3 follows the crystallographic relationship
(100)b//(011)γ; [001]b//[111]γ with relic bayerite (denoted as b). The γ-Al2O3 also
shows {111} twin/faults and rock salt-type domains due to dehydroxylation of
bayerite which involves {111} shuffling and disordering of the Al ions in the
octahedral and tetrahedral sites. The combined evidences of X-ray photoelectron
spectroscopy, vibrational spectroscopy and UV-visible absorbance indicated that the
H+, Al+ and Al2+ co-doped bayerite and γ-Al2O3 composite plates have a minimum
band gap as low as ~ 5 eV for potential catalytic and electro-optical applications in
water environment.
Finally, pulsed laser ablation in aqueous solution of NaOH up to 1 M was
employed to fabricate epitaxial NaAlO2 and γ-Al2O3 nanopartricles for electron
microscopic and spectroscopic characterizations. The NaAlO2 phase (denoted as N),
presumably derived from NaAlO2
.5/4H2O, was found to form intimate intergrowth
with the γ-Al2O3 following a specific crystallographic relationship [211]γ//[110]N;
( 2 22) γ//(002)N and (0 2 2) γ//(110)N for a parallel close packed planes in terms of
corner linked AlO4 tetrahedra and a beneficial lower interfacial energy and/or strain
energy. The composite phases have significant internal compressive stress up to 7
and 40 GPa according to cell volume and IR shift results and a low minimum band
gap of 5.9 eV for potential applications in UV region.
目次 Table of Contents
Contents
論文提要 (中) .......................................................................................................I
Abstract.................................................................................................................IV
Content…………………………………………………………………………..VII
List of figures………………………………………………………….………...XII
List of table and appendixes………………………………………………......XXII
Chapter 1
Introduction
1.1. Fabrication of aluminum oxide nanoparticles …………..............................1
1.2. Phase transformation of aluminum oxide polymorphs via heat treatment.2
1.3. Alumina hydrates and sodium aluminates.....................................................3
1.4. Anisotropic growth of aluminum hydrate and alumina………………..…..4
Chapter 2
Onset coarsening-coalescence kinetics of γ-type related Al2O3 nanoparticles:
implications to their assembly in a laser ablation process
2.1. Introduction……………………………………………………………….....5
2.2. Experimental………………………………………………………………...8
2.3. Results………………………………………………………………………..9
2.3.1 Shape of the starting powders…………………………………………...9
2.3.2 Phase identity of the dry pressed powders upon heating……………… .9
2.3.3 Specific surface area, pore and microstructure changes upon heating...10
2.3.4 SEM observations of dry pressed and further heated samples…………12
2.3.5. Phase behavior of the particles under electron beam heating…………13
2.4. Discussion………………………………………………………………..... 14
2.4.1. Adsorption-desorption hysteresis loop characteristic of cylindrical
mesopores condensates…………………………………......................14
2.4.2. Activation energy and diffusion mechanism for onset coarseningcoalescence……...................................................................................
15
2.4.3. Effect of specific surface area on the phase change of Al2O3………....17
2.4.4. Implications for the phase behavior of γ-Al2O3 in a dynamic process..18
2.5. Conclusions…………………………………………………………............19
Figures…………………………………………………………………………... 28
Chapter 3
Formation of Ultrafine and Dense α-Al2O3 Nanoparticles via Kinetic Phase
Change in a Dynamic Process
3.1. Introduction…………………………………………………………………38
3.2. Experimental………………………………………………………………. 39
3.3. Results…………………..………………………………………………….. 41
3.3.1. TEM observations..…………………………………………………….41
3.3.2. SEM and vibrational/optical spectroscopy of the deposit on glass
substrate…………..……………………………………………………..42
3.4. Disccusion…………………..………………………………………...…….. 43
3.4.1. Internal stress of the nanocondensates…………………………………43
3.4.2. Polymorphic phase change of ultrafine and dense nanocondensates….44
3.4.3. Special lattice correspondence of γ- and α-Al2O3……………………..46
3.4.4. Implications on natural settings and engineering applications………..48
3.5. Conclusions……………………………………………………………….... 49
Figures……………………………………………………………………………54
Chapter 4
H+ and Al2+-codoped Al2O3 nanoparticles with spinel-type related structures by
pulsed laser ablation in water
4.1. Introduction……………………………………………………………………65
4.2. Experimental…………………………………………………………………..66
4.3. Results……………………………………………………………………… …68
4.3.1 XRD and SEM.………………………………………………………..… ..68
4.3.2 Vibrational, XPS and UV-visible spectra .………………………...….…. 69
4.3.3 TEM ……………………………………………………………………... 70
4.4. Discussion……………………………………………………………….…… .72
4.4.1 Theoretical maximum shock pressure via PLAL.…….……………….…..72
4.4.2 Observed internal stress of the γ-Al2O3 nanocondensates. …………...….73
4.4.3 Oxolation and defect chemistry of H+ and Al2+-codoped Al2O3 via PLAL.75
4.4.4 Shape and lattice correspondence of the γ- and θ-Al2O3 nanocondensates76
4.5. Conclusions…………………………………………………………………....78
Figures…………………………………………………………………………... ... 81
Chapter 5
Formation of (H+,Al+,Al2+) co-doped bayerite and γ-Al2O3 plates from spinel-type
related nanocondensates in water
5.1. Introduction…………………………………………………………….……...93
5.2. Experimental…………………………………………………………………. 94
5.3. Results…………………………………………………………………….…...96
5.3.1. XRD and SEM.............................................................................................96
5.3.2. Spectroscopy…………………………………………………….……….96
5.3.3. Electron irradiation-induced dehydration of bayerite……………….…..98
5.4. Discussion…………………………………………………………………… 98
5.4.1. Epitaxial nucleation of bayerite rather than gibbsite from a dense
spinel-type nanocondensate……………………………………………..98
5.4.2. {hkl}-specific anisotropic growth rather than rolling of bayerite plates..99
5.4.3. Shear-type allotropic transformation in alumina hydrate upon
dehydration….……………………………………………………….....100
5.5. Conclusions…………………………………………………………………..102
Figures…………………………………………………………………………… 104
Chapter 6
NaAlO2 and γ-Al2O3 nanoparticles by pulsed laser ablation in aqueous solution
6.1. Introduction……………………………………………………………….... 115
6.2. Experimental……………………………………………………………...... 116
6.3. Results………………………………………………………………………..117
6.3.1. XRD…………………………………………..….…………...................118
6.3.2. SEM……………………………………………………………………..118
6.3.3. TEM……………………………………………………………………..118
6.3.4. Vibrational, XPS and UV-visible spectra……………………………….119
6.4. Discussion………………………………………………………………….....121
6.4.1. Oxolation of Al-O-H to form hydrous/anhydrous sodium aluminate…...121
6.4.2. Internal stress of γ-Al2O3 and hydrous/anhydrous NaAlO2 condensates..123
6.4.3. Lattice correspondence of γ-Al2O3 and β-NaAlO2……………………...125
6.5. Conclusions…………………………………………………………………...126
Figures………………………………………………………………………….….133
References……………………………………………………………………........146
參考文獻 References
References
Al-Abadleh, H.A., Grassian, V.H., FT-IR study of water adsorption on aluminum oxide surfaces, Langumir, 2003, 19, 341-347.
Ansell, S., Krishnan, S., Weber, J. K. R., Felten, J. J., Nordine, P. C., Beno, M. A., Price, D. L. and Saboungi, M. L., Structure of liquid aluminum oxide. Phys. Rev. Lett. 1997, 78, 464-466.
Ash, R., Origin and early evolution of solid matter in the solar system. Meteorities Planetary Sci., 2001, 36, 583-584.
Ayral, A. and Phalippou, J., Submicrometer alumina. powders, Adv. Ceram. Mater., 1988, 3, 575-579.
Badkar, P. A. and Bailey, J. E., The mechanism of simultaneous sintering and phase transformation in alumina, J. Mater. Sci., 1976, 11, 1794-1806.
Balan, E., Blanchard, M., Hochepied, J.F., Lazzeri, M., Surface modes in the infrared
spectrum of hydrous minerals: the OH stretching modes of bayerite, Phys. Chem.
Minerals, 2008, 35, 279-285.
Bennison, S. J. and Harmer, M. P., Microstructural studies of abnormal grain growth development in Al2O3. in Ceramic Powders, edited by Vincenzini. P., Elsevier, Amsterdam, 1983, pp. 929-938.
Benner, R.E., Mitchell, J.R., Grow, R.W., Raman scattering as a diagnostic technique for cathode characterization, International Electron Devices Meeting, IEEE, 1986, 32, 696-699.
Berthe, L.; Fabbro, R.; Peyre, L.; Tollier, L.; Bartnicki, E., Shock waves from a
water-confined laser-generated plasma, J. Appl. Phys. 1997, 82, 2826-2832.
Brunauer, S., Emmett, P. H. and Teller, E., Adsorption of gases in multimolecular layers. J. Am. Chem. Soc., 1938, 60, 309-319.
Barrett, E. P., Joyner, L. G. and Halenda, P.P., The determination of pore volume and area distribution in porous substances I. Computations from nitrogen isotherms. J. Am. Chem. Soc., 1951, 73, 373-380.
Cai, S.H, Rashkeev, S.N, Pantelides, S.T, Sohlberg, K, Phase transformation
mechanism between γ- and θ-alumina, Physical Review B, 2003, 67, 224104-10.
Carreira, L.A, Maroni, V.A, Swaine, J.W, Plumbm R.C. Raman and infrared spectra
and structures of the aluminate ions, The Journal of Chemical Physics, 1966, 45,
2216-2220.
Cava, S., Tebcherani, S. M., Souza, I. A., Pianaro, S. A., Paskocimas, C. A., Longo, E.,
Vaela, J. A., Structural characterization of phase transition of Al2O3 nanopowders
obtained by polymeric precursor method, Mater. Chem. Phys. 2007, 103, 394.
Chang, P. L., Yen, F. S.; Cheng, K. C. and Wen, H. L., Examinations on the critical
and primary crystallite sizes during θ- to α-phase transformation of ultrafine
alumina powders. Nano Lett. 2001, 1, 253-261.
Chen, P. L. and Chen, I. W., Sintering of fine oxide powders. J. Am. Ceram. Soc.,
1997, 80, 637-45.
Chen, B., Penwell, D., Benedetti, L.R., Jeanloz, R., Kruger, M.B., Particle size effect
on the compressibility of nanocrystalline alumina, Phys. Rev. B 2002, 66,
144101-1 to 4.
Chou, T. C., Nieh, T. G., Nucleation and concurrent anomalous grain growth of
α-Al2O3 during γ → α phase transformation, J. Am. Ceram. Soc. 1991, 74,
2270-2279.
Choi, B. G., Huss, G. R., Wasserburg, G. J. and Galline, R., Presolar corundum and
spinel in ordinary chondrites: origins from AGB stars and a supernova. Science,
1998, 2282, 1284-1289.
Contreras, C.A., Sugita, S., Ramos. E, Preparation of sodium aluminate from basic
aluminium sulfate, Journal of Materials Online, 2006, 2, 1-13.
Coutures, J. P., Massiot, D., Bessada, C., Echegut, P., Rifflet, J. C., and Taulelle, F., A
27A1 NMR study of liquid aluminates in the 1600oC-2100 oC temperature range.
C.R. Acad. Sci., 1990, 310, 1041-1045.
Digne, M, Sautet, P, Raybaud, P, Toulhoat, H, Artacho, E, Structure and stability of
aluminum hydroxides: A theoretical study, J. Phys. Chem. B, 2002, 106,
5155-5162.
Eslami Farsani, R., Raissi, S., Shokuhfar, A., Sedghi, A. FT-IR study of stabilized
PAN fibers for fabrication of carbon fibers, World Academy of Science,
Engineering and Technology, 2009, 50, 430-433.
Fabbro, R.; Fournier, J.; Ballard, P.; Devaux, D.; Virmont, J., Physical study of
laser-produced plasma in confined geometry, J. Appl. Phys. 1990, 68, 775-784.
Farber, D. L. and Williams, Q., Pressure-induced coordination changes in
alkali-germanate melts: an in situ spectroscopic investigation. Science, 1992, 256
1427-1430.
Fahn, Y.Y., Shen, P., Su, A.C., Biomimetic co-assembly of gibbsite and mesophases: a
novel synthesis route by devitrification of gel derived from hydrothermal
aluminosilicate/CTAB solution. Clays and Clay Mineralogy, 2004, 52, 453-463.
Feng, X., Sayle, D.C., Wang, Z.L., Paras, M.S., Santora, B., Sutorik, A.C., Sayle,
T.X.T., Yang, Y., Ding, Y., Wang, X., Her, Y.S., Converting ceria polyhedral
nanoparticles into single-crystal nanospheres, Science 2006, 312, 1504-1508.
Ferim, J.; McKittrick, J.; Katz, J.; Sickafus, K. Microwave sintering of
nanocrystalline γ-Al2O3, Nanostruct. Mater. 1994, 4, 371-385.
Finger, L.W., Hazen, R.M., Crystal structure and compression of ruby to 46 kbar, J.
Appl. Phys. 1978, 49, 5823-5826.
French, R. H., Electronic band structure of Al2O3, with comparison to AlON and AlN,
J. Am. Ceram. Soc. 1990, 73, 477-489.
Gallas, M. R.; Hockey, B.; Pechenik, A.; Piermarini, G. J. Bulk modulus and Young’s
modulus of nanocrystalline γ-Al2O3J. Am. Ceram. Soc. 1994, 77, 2107-2120.
Gallas, M.R.; Piermarini, G.J. J. Am. Ceram. Soc, Fabrication of transparent γ-Al2O3
from nanosize particles, 1994, 77, 2917-2112.
Giese Jr., R.F., Hydroxyl orientations in gibbsite and bayerite, Acta Cryst., 1976, B32,
1719-1732.
Goldstein, A. N., Echer, C. M. and Alivisatos, A. P., Melting in semiconductor
nanocrystals. Science, 1992, 256, 1425-1427.
Goodshaw, H. J., Forrester, J. S., Suaning, G. J. and Kisi E. H., Sintering temperature
depression in Al2O3 by mechanical milling. J. Mater. Sci. 2007, 42, 337-345.
Greenwood, N.N., Earnshaw, A., (1997), Chemistry of the Elements (2nd ed.), Oxford:
Butterworth-Heinemann.
Hartman, P., Perdok, W.G., On the relations between structure and morphology of
crystals I, Acta Cryst. 1955a, 8, 49-52.
Hartman P. and Perdok W.G., On the relations between structure and morphology of
crystals. II, Acta Cryst, 1955b, 8, 521-524.
Hartman P. and Perdok W.G., On the relations between structure and morphology of
crystals. III, Acta Cryst, 1955c 8, 525-529.
Heymann, D and Hörz, F, Raman-spectroscopy and X-ray diffractometer studies
of experimentally produced diaplectic Feldspar glass, Phys Chem Minerals,
1990,17, 38-44.
Hazen, R.M., Papineau, D., Bleeker, W., Downs, R.T., Ferry, J., McCoy, T.L.,
Sverjensky, D., Yang, H., Mineral evolution, Am. Mineral. 2008, 93, 1693-1720.
Herring, C., Effect of change of scale on sintering phenomena. J. Appl. Phys. 1950, 21,
301-330.
Huang, J.J. Master thesis, National Sun Yat-sen University, Taiwan, 2008.
Hwang, S.L., Shen, P., Chu, H.T., Yui, T.F., Liu, J.G. Sobolev N.V. Kumdykolite, an
orthorhombic polymorph of albite, from the Kokchetav ultrahigh-pressure massif,
Kazakhstan, Euro. J. Mineral, 2009, 21, 1325-1334.
Hwang, S.L., Shen, P., Yui, T.F., Chu, H.T., On the coherency-controlled growth
habit of precipitates in minerals, J. Appl. Cryst., 2010, 43, 417-428.
Jang, H. D. and Friedlander, S. K., Restructuring of chain aggregates of titania
nanoparticles in the gas phase. Aerosol Science and Technology, 1998, 29, 81-91.
Johnston, G.P., Muenchausen, R., Smith, D.M., Fahrenholtz, W., Foltyn, S., Reactive
laser ablation synthesis of nanosize alumina powder, J. Am. Ceram. Soc., 1992, 75,
3293-3298.
Karch, J., Birringer, R. and Gleiter, H. Ceramics ductile at low temperature. Nature,
1987, 330, 556-558.
Karagedov, G. R., Lyakhov, N. Z. Preparation and sintering of nanosize α-Al2O3
powder. Nanostruct. Mater. 1999, 11, 559-572.
Kern, R., Masson, A., Métois, J.J., Migration Brownienne de cristallites sur une
surface et relation avec l'epitaxie, Surf. Sci. 1971, 27, 483-493.
Kiss, A.B.; Keresztury, G.; Farkas, L., Raman and IR spectra of boehmite (γ-AlOOH).
Evidence for the recently discarded D17
2h space group, Spectrochim Acta, 1980,
36A, 653–658.
Kloprogge, J.K., Duong, L.V., Wood, B.J., Frost, R.L., XPS study of the major
minerals in bauxite: gibbsite, bayerite and (pseudo-) boehmite, Journal of Colloid
and Interface Science, 2006, 296, 572-576.
Kogure, T., Dehydration sequence of gibbsite by electron-beam irradiation in a TEM,
J. Am. Ceram. Soc, 1999, 82, 716-720.
Kröger, F.A and Vink, H.J., Relations between concentrations of imperfections in
crystalline solids, Solid State Phys., 1956, 3, 307-435.
Kruusing, A. Optics and lasers Engineering, 2004, 41, 307 and literature cited
therein.
Kaduk, J.A., Pei, S., The crystal structure of hydrated sodium aluminate,
NaAlO2·5/4H2O, and its dehydration product, J. Solid State Chem., 1995, 115,
126-139.
Levin, I. and Brandon, D., A new alumina polymorph with monoclinic symmetry.
Phil. Mag. Lett. 1998a, 77, 117-124.
Levin, I and Brandon, D., Metastable alumina polymorphs: crystal structures and
transition sequences. J. Am. Ceram. Soc. 1998b, 81, 1995-2012.
Li, J. G. and Sun, X., Synthesis and sintering behavior of a nanocrystalline α-alumina
powder. Acta Materialia, 2000, 48, 3103-3112.
Liese, H.C., An infrared absorption analysis of magnetite, Am. Mineral. 1967, 52
1198-1205.
Lin, C.H., Shen, P., Chen, S.Y., Zheng Y., Condensation and crystallization of
amorphous/lamellar chromium sesquioxide, J. Phy. Chem. C, 2008, 112,
17559-17566.
Lin, C.H., Huang, C.N., Chen, S.Y., Zheng, Y., Shen, P., On the enhanced solute
content, shape, defect microstructures and optical properties of Ti-doped γ-Al2O3
nanocondensates, J. Phys. Chem. C ,2009, 113, 19112-19118.
Lim, L. C., Wong, P. M. and Jan, M., Microstructural evolution during sintering of
near-monosized agglomerate-free submicron alumina powder compacts. Acta
Materialia, 2000, 48, 2263-2275.
Lippens, B. C. and de Boer J. H., Study of phase transformations during calcination of
aluminum hydroxides by selected area electron diffraction. Acta Cryst., 1964, 17,
1312-1321.
Lippens, B. C., Steggerda, J. J., “Active Alumina” in Physical and Chemical Aspectsof Adsorbents and Catalysts, B. Glinsen Ed., Academic Press, New York, 171
(1970).
Liu, I.L., Shen, P., Onset coarsening-coalescence kinetics of γ-type related Al2O3
nanoparticles: Implications to their assembly in a laser ablation process, J. Euro.
Ceram. Soc. 2009, 29, 2235-2248.
Liu, I.L., Shen, P., Chen, S. Ultrafine α-Al2O3 nanocondensates by pulsed laser
ablation under a high power density in vacuum, J. Nanopart. Res. (2010a, in
press).
Liu, I.L., Shen, P., Chen, S.Y. H+ and Al2+-codoped Al2O3 nanoparticles with
spinel-type related structures by pulsed laser ablation in water, J. Phys. Chem. C,
2010b, 114, 7751-7757.
Liu, Y., Gao, L., Yu, L., Guo, J., Adsorption of PBTCA on alumina surfaces and its
influence on the fractal characteristics of sediments, J. Colloud. Interf. Sci., 2000,
227, 164-170
Livage, J., Sol-gel synthesis of heterogeneous catalysts from aquenous solutions,
Catalysis Today, 1998, 41, 3-19.
Lovas, H., Tóth, M., Madaràsz, J., Josepovits, V. K., Tóth, Z., Reactions causing loss
of sodium vapor in HPS lamps, J. Anal. Appl. Pyrolysis, 2007, 79, 471-474.
Lowell, S. and Shields, J. E., Powder surface area and porosity, Chapman and Hall,
London, U.K., 1984, pp. 3-5, 17-29.
Lu, Y.F., Huang, S.M., Wang, X.B., Shen, Z.X.. Laser-assisted growth of diamond
particulates on a silicon surface from a cyclohexane liquid, Appl. Phys. A 1998, 66
543-547.
Lu, C.L.; Lv, J.G., Xu, L., Hou, W.H., Hu, Y.; Huang, H., Crystalline nanotubes of
γ-AlOOH and γ-Al2O3 : hydrothermal synthesis, formation mechanism and
catalytic performance, Nanotechnology, 2009, 20, 2156041-2156049
Ma, S.H., Zheng, S.L., Xu, H.B., Zhang, Y., Spectra of sodium aluminate solutions,
Transactions of Nonferrous Metals Society of China, 2007, 17, 853-857.
Mackrodt, W. C., Davey, R. J., Black, S. N., The morphology of α-Al2O3 and α-Fe2O3:
the importance of surface relaxation, J. Cryst. Growth, 1987, 80, 441-446.
Manassidis, I., Gillan, M. J., Structure and energetics of alumina surfaces calculated
from first principles, J. Am. Ceram. Soc, 1994, 77, 335-338.
Maruyama, T., Arai, S., Aluminum oxide thin films prepare by chemical vapor
deposition from aluminum acetylacetonate, Appl. Phys. Lett, 1992, 60, 322-323.
Massalski, T.B., Soffa, W.A., Laughlin, D.E., The nature and role of incoherent
interphase interfaces in diffusional solid-solid phase transformations, Metall.
Mater. Trans, 2006, 37A, 825-831.
Massiot, D., Taulelle, F. and Coutures, J. P., Structural diagnostic of high-temperature
liquid-phases by Al-27 NMR. J. Colloq. Phys. C. 1990, 51, 5425-5431.
Masson, A., Métois, J.J., Kern, R., Migration Brownienne de cristallites sur une
surface et relation avec l'epitaxie., Surf. Sci. 1971, 27, 463-482.
McHale, J. M. and Navrotsky, A., Effect of increased surface area and chemisorbed
H2O on the relative stability of nanocrystalline α-Al2O3 and γ-Al2O3. J. Phys.
Chem. B, 1997a, 101, 603-613.
McHale, J. M., Auroux, A., Perrotta, A. J. and Navrotsky, A., Surface energies and
thermodynamic phase stability in nanocrystalline aluminas. Science, 1997b, 277,
781-791.
Métois, J.J., Gauch, M., Masson, A., Kern, R., Migration Brownienne de cristallites
sur une surface et relation avec l'epitaxie,Surf. Sci. 1972, 30, 43-52.
Mishra, R. S.; Schneider, J. A.; Shackelford, J. F.; Mukherjee, A. K, Plasma activated
sintering of nanocrystalline γ-Al2O3, Nanostruct. Mater. 1995, 5, 525-544.
Moreno, P., Mendez, C., Garcia, A., Torchia, G., Delgado, D., Vazquez de Aldana, J.R.,Arias, I., Roso, L., Synthesis of ceramic nanoparticles by ultrafast laser
ablation of solid targets in water, J. Nanosci. Nanotechnol. 2006, 6, 1961-1967.
Näykki, T., Raimo, A., Paavo, P., Antero, K., Päivi, N., Determination of Na2O from
sodium aluminate NaAlO2, Talanta, 2000, 52, 755-760.
Noack, J.; Vogel, A. Laser-induced plasma formation in water at nanosecond to
femtosecond time scales: calculation of thresholds, absorption coefficients, and
energy density, IEEE Journal of Quantum Electronics, 1999, 35, 1156-1167.
Noel, Y.; Demichelis, R.; Pascale, F.; Orlando, R,; Dovesi, R., Ab initio quantum
mechanical study of γ-AlOOH boehmite: structure and vibrational spectrum, Phys.
Chem. Minerals., 2009, 36, 47-59.
Ogale, S. B.; Malshe, A. P.; Kanetkar, S. M.; Kshirsagar, S. T., Solid State Comm.,
1992, 84, 371.
Oh, S. H., Kauffmann, Y., Scheu, C., Kaplan, W. D. and Rühle, M., Ordered liquid
aluminum at the interface with sapphire. Science, 2005, 310, 661-663.
Ostertag, R, Proceedings of the 14th Lunar and Planetary Science Conference, Part 1
Shock experiment on feldspar crystals, Journal of Geophysical Research, 1983, 88,
B364-B376.
Palacio, C.; Arranz, A., Oxidation of iron deposited on polycrystalline aluminum
surface, J. Phys. Chem. B, 2001, 105, 10851-10811.
Pan, C., Chen, S. Y. and Shen, P. Laser ablation condensation, coalescence and phase
change of dense γ-Al2O3 particles. J. Phy. Chem. B, 2006a, 110, 24340-24345.
Pan, C., Shen, P., Huang, W.L., Hwang, S.L., Yui, T.F., Chu, H.T., High
temperature-pressure synthesis of Ti-doped tohdite and corundum from hydrous
Al2O3-TiO2 gel, J. Euro. Ceram. Soc. 2006b, 26, 2707-2717.
Pan, C., Shen, P., Chen, S.Y., Condensation, crystallization and coalescence of
amorphous Al2O3 nanoparticles, J. Cryst. Growth, 2007, 299, 393-398.
Pan, C., Chen, S.Y., Shen, P., Photoluminescence and transformation of dense
Al2O3:Cr3+ condensates synthesized by laser ablation route, J. Cryst. Growth,
2008, 310, 699-705.
Pecharromán, C., Sobrados, I., Iglesias, J.E., González-Carreño, T., Sanz, J., Thermal
evolution of transitional aluminas followed by NMR and IR spectroscopies, J.
Phys. Chem. B, 1999, 103, 6160-6170.
Penn, R.L and Banfield, J.F., Morphology development and crystal growth in
nanocrystalline aggregates under hydrothermal conditions: insights from titania
Geochim. et Cosmochim. Acta, 1999, 63, 1549-1557.
Poisson, R.; Nortier, P.; Brunelle, J. P. In Catalysts and Supported Catalysts; Stiles,
A.B., Ed.; Butterworths: Boston, 1987; p 11.
Putnis, A. Introduction to mineral sciences, Cambridge University Press, Cambridge,
1992, p. 166.
Rooksby, H.P., In X-ray identification and crystal structures of clay minerals, W. F.
Bradley, Ed., Mineralogical Society, London, p. 264 (1951).
Rothbauer, V.R., Zigan, F., O’Daniel, H., Verfeinerung der struktur des bayerits,
Al(OH)3 einschlieβlich eines vorschlags für die h-positionen., Zeitschrift für
Kristallographie, Bd, 1967, 125, S. 317-331.
Rousseaux, J. M., Weisbecker, P., Muhr, H., Plasari, E., Aging of precipitated
amorphous alumina gel, Ind. Eng. Chem. Res. 2002, 41, 6059-6069.
Ruan, H.D.; Frost, R.L.; Kloprogge, J.T., Comparison of Raman spectra in
characterizing gibbsite, bayerite, diaspore and boehmite, J. Raman Spectrosc,
2001, 32, 745-750.
Saito K., Takatani K., Sakka T. and Ogata Y.H., “Observation of the light emitting
region ptoduced by pulsed laser irradiation to a solid-liquid interface,” Appl. Surf.
Sci. 2002, 197-198, 56-60.
Sajti, C.L., Sattari, R., Chichkov, V.N., Barcikowski, S., Gram scale synthesis of pure
ceramic nanoparticles by laser ablation in liquid, J. Phys. Chem. C, 2010, 114,
2421-2427.
Shebanova, O.N., Lazor, P., Raman spectroscopic study of magnetite (FeFe2O4): a
new assignment for the vibrational spectrum, J. Solid State Chem, 2003, 174,
424-430.
Shen, P., Hwang, S.L., Chu, H.T. Defect microstructure and dehydroxylation
mechanism of interstratified phyllosilicates in Heng-Chun Chromitite: A TEM
study, J. Mat. Sci., 1990, 25, 3072-3078.
Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol,
J. and Siemieniewska, T., Reporting physisorption data for gas/solid systems with
special reference to the determination of surface area and porosity. Pure Appl.
Chem., 1985, 57, 603-619.
Spagnoli, D., Gilbert, B., Waychunas, G.A. and Banfield, J.F., Predictions of the
effects of size and morphology on the structure of water around hematite
nanoparticles. Geochimi. et Cosmochimica Acta, 2009, 73, 4023-2033.
Stroud, R. M., Nittler, L. R. and O’D Alexander, C. M., Polymorphism in presolar
Al2O3 grains from asymptotic giant branch stars. Science, 2004, 305, 1455-1457.
Sunagawa, I., Growth and morphology of diamond crystals under stable and
metastable conditions, J. Cryst. Growth, 1990, 99, 1156.
Tan, D.; Teng, Y.; Liu, Y.; Zhuang, Y.; Qiu, J., Preparation of zirconia nanoparticles by
pulsed laser ablation in liquid, Chem. Lett. 2009, 38, 1102.
Teng, M. H., Marks, L. D. and Johnson, D. L. Computer simulations of interactions
between ultrafine alumina particles produced by an arc discharge. J. Mater. Res.,
1997, 12, 235-243.
Thompson, J.G., Melnitchenko, A., Palethorpe, S.R., Withers, R.L., An XRD and electron diffraction study of cristobalite-related phases in the NaAlO2-NaAlSiO4,
system, Journal of Solid State Chemistry, 1997, 131, 24-37.
Tijburg, I. I. M., De Bruin, H., Elberse, P. A. and Geus, J. W., Sintering of
pseudo-boehmite and γ-Al2O3. J. Mater. Sci. 1991, 26, 5945-5949.
Toker, G..; Bulatov, V.; Kovalchuk, T.; Schechter, I. Micro-dynamics of optical
breakdown in water induced by nanosecond laser pulses of 1064 nm wavelength,
Chem. Phys. Lett. 2009, 471, 244-248.
Tsai, D. S. and Hsieh, C. C., Controlled gelation and sintering of monolithic gels
prepared from γ-alumina fume powder, J. Am. Ceram. Soc., 1991, 74, 830-836.
Tsai, M. H. M.S. Thesis, National Sun Yat-sen University, Taiwan (2002).
Tsai, M. H., Chen, S. Y. and Shen, P. Imperfect oriented attachment: accretion and
defect generation of nanosize rutile condensates, Nano Letters, 2004, 4,
1197-1201.
Tsai, M. H., Shen, P. and Chen, S. Y., Defects generation of anatase nanocondensates
via coalescence and transformation from dense fluorite-type TiO2. J. Appl. Phys.,
2006, 100, 114313-1 to 6.
Vijay, A., Mills, G. and Metiu, H. Structure of the (001) surface of γ alumina. J. Chem.
Phys. 2002, 117, 4509-4516.
Viswanath, B., Kundu, P., Halder, A., Ravishankar, N., Mechanistic aspects of shape
selection and symmetry breaking during nanostructure growth by wet chemical
methods, J. Phys. Chem. C, 2009, 113, 16866–16883.
Watling. H., Spectroscopy of concentrated sodium aluminate solutions, Applied
Spectroscopy, 1998, 52, 250-258.
Wefers, K., Misra, C., Oxides and hydroxides of aluminum, Alcoa Technical Paper
No.19, Revised, Alcoa Laboratories, Pittsburgh, PA (1987).
Wen, H.L., Chen, Y.Y., Yen, F.S., Huang, C.Y., Size characterization of θ- and α-Al2O3 crystallites during phase transformation, Nanostructured Mater. 1999, 11, 89-101.
Wen, H.L., Yen, F.S., Growth characteristics of boehmite-derived ultrafine theta and
alpha-alumina particles during phase transformation, J. Cryst. Growth, 2000, 208,
696-708.
Xu J.A., Huang, E., Lin, J.F., Xu L.Y., Raman study at high pressure and the
thermodynamic properties of corundum: Application of Kieffer’s model,
American Mineralogist, 1995, 80, 1157-1165.
Yamaguchi,G., Yanagida, H. and Ono, S., A new alumina hydrate, tohdite (5Al
2O3
.H2O), Bulletin of the chemical society of Japan, 1963, 37, 752-754.
Yamaguchi, G., Yanagida, H., Ono, S., Condition of tohdite 5Al2O3.H2O formation, J.
Ceram. Assoc. Jpn., 1966, 74, 84-88.
Yang G.W., “Laser ablation in liquids: Applications in the synthesis of nanocrystals,”
Prog. Mater. Sci. 2007, 52, 648-698.
Yang, G. W., Wang J. B., Liu, Q. X. Preparation of nano-crystalline diamonds using
pulsed laser induced quenching, J. Phys.: Condens. Matter, 1998, 10, 7923-7927.
Yatsui, K., Yukawa, T., Grigoriu, C., Hirai, M., Jiang, W., Synthesis of ultrafine
γ-Al2O3 powders by pulsed laser ablation. J. Nanoparticle Research, 2000, 2,
75-83.
Zhang, L., Tian, C., Waychunas, G.A., Shen, Y.R., Structures and charging of
α-alumina (0001)/water interfaces studied by sum-frequency vibrational
Spectroscopy, J. Am. Chem. Soc. 2008, 130, 7686-7694.
Zhao J., Hearne, G.R., Maaza, M., Laher-Lacour, F., Witcomb, M.J., Le Bihan, T.,
Mezouar, M., Compressibility of nanostructured alumina phase determined from
synchrotron x-ray diffraction studies at high pressure, J. Appl. Phys. 2001, 90,
3280-3285.
Zhou, R.S., Snyder, R.L., Structures and transformation mechanisms of the η,γ and θtransition alumina, Acta Cryst., 1991, B47, 617-630.
Zigan, F., Joswig, W., Burger, N., Die wasserstoffpositionen im bayerit Al(OH)3,
Zeits. Krist, 1978, 148, 255–273.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.149.250.1
論文開放下載的時間是 校外不公開

Your IP address is 3.149.250.1
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code