Responsive image
博碩士論文 etd-0715112-155903 詳細資訊
Title page for etd-0715112-155903
論文名稱
Title
多孔隙金屬氧化物與其應用
Porous Metal Oxides and Their Applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
99
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-20
繳交日期
Date of Submission
2012-07-15
關鍵字
Keywords
有機發光二極體、布拉格反射鏡、超臨界二氧化碳、多孔隙、氧化銦錫、氧化鍗錫、銀電沉積元件、雙層抗反射
Organic light-emitting diode (OLED), High-reflection coating, Anti-reflection coating, Indium tin oxide (ITO), Silver electro deposition device, Porous, Supercritical carbon dioxide (SCCO2), Antimony-doped tin oxide (ATO)
統計
Statistics
本論文已被瀏覽 5649 次,被下載 281
The thesis/dissertation has been browsed 5649 times, has been downloaded 281 times.
中文摘要
本論文之主題是以超臨界二氧化碳(Supercritical carbon dioxide, SCCO2)流體技術於低溫下進行金屬氧化物薄膜之處理,並且應用於光電元件上。SCCO2流體具有如氣體般的低黏滯係數、高擴散係數及低表面張力;如液體般的高密度、溶解能力,亦稱之為綠色溶劑。本研究利用SCCO2流體優異的物理特性成功製作出多孔隙(Porous)氧化鍗錫(Antimony tin oxide, ATO)及多孔隙氧化銦錫(Indium tin oxide, ITO)薄膜,並且應用於顯示、太陽能及發光元件上。另外,也利用SCCO2流體成功提升了ITO薄膜之功函數(Work function)及表面能(Surface energy),進而提升有機發光二極體(Organic light emitting diode, OLED)元件之性能。
首先於顯示元件方面,其多孔隙ATO薄膜是經SCCO2流體處理而形成,作為元件內銀原子之吸附電極。多孔隙ATO薄膜之孔隙度達43.1%、穿透度與電阻率為90.4%及3 Ω-cm。此外,silver electro deposition 顯示元件之特性顯示出,其操作電壓為1.5 V、穿透對比度達12以上,且於0.25 cm2 顯示面積之元件,反應時間約4.5秒。
另ㄧ方面,我們將異丙醇(IPA)混入SCCO2流體進行Sol-gel ITO薄膜處理,形成低折射率之多孔隙ITO薄膜,並且堆疊於長距離磁式濺鍍法(Long-throw radio-frequency magnetron sputtering technique)之高折射率ITO薄膜,其多孔隙ITO與sputtered ITO薄膜之折射率差(Δn)達0.6以上,可有效率製作出導電抗反射與高反射結構之薄膜。導電雙層抗反射薄膜於AM1.5太陽光譜下,平均反射率可達4.3%、透光度達83.1%、片電阻為1.1KΩ/□;而porous ITO/sputtered ITO相互堆疊八層之導電高反射薄膜可達87.9%的反射率,片電阻為35 Ω/□。
最後,我們將雙氧水(H2O2)混入SCCO2流體對濺鍍ITO薄膜進行表面改質,由實驗結果證實,SCCO2/H2O2之處理可有效增加其功函數及表面能,最高可達5.5eV及74.8 mJ/m2。應用於OLED元件上,起始電壓為6.5V、發光功率效率為1.94 lm/W,相較於ITO電極經氧電漿處理與未經任何處理之OLED元件分別提升19.3%與33.8%。
Abstract
Porous metal oxides formed by supercritical carbon dioxide (SCCO2) treatments at low temperature were used for displays, solar cells, and light emitting diodes (LEDs) applications. The SCCO2 fluid, also known as green solvents, exhibits low viscosity, low surface tension and high diffusivity as gases, and high density and solubility same with liquids. In this thesis, we successfully fabricated porous antimony-doped tin oxide (ATO) and porous indium tin oxide (ITO) by the SCCO2 treatments. In addition, the treatment can also be used to improve the work function and surface energy of ITO anode of an organic LED (OLED). The performance of the OLEDs was drastically enhanced in comparison with that of the devices without any ITO surface treatments.
First, the porous ATO films were formed by the SCCO2 treatment for absorption of silver molecules in silver electro deposition devices. The porosity, resistivity and average optical transmittance of the porous ATO film in visible wavelength were 43.1%, 3 Ω-cm and 90.4%, respectively. For the silver electro deposition devices with the porous ATO film, the transmittance contrast ratio of larger than 12 in visible spectrum was obtained at an operating voltage of 1.5 V. Furthermore, for the 0.25 cm2 device, the switching time of 4.5 seconds was achieved by applying a square-wave voltage ranging from 1.5 to -0.2 V between the electrodes.
On the other hand, the porous ITO with low refractive index was prepared by SCCO2/IPA treatment on gel-coated ITO thin films. The high refractive index of the ITO film was achieved by long-throw radio-frequency magnetron sputtering technique at room temperature. The index contrast (Δn) was higher than 0.6 between porous ITO and sputtered ITO films. The large Δn is useful for fabricating conductive anti-reflection (AR) and high reflection (HR) structures using the porous ITO on sputtered ITO bilayers. The weighted average reflectance and transmittance of 4.3% and 83.1% were achieved for the double-layer ITO AR electrode with a sheet resistance of 1.1 KΩ/•. For HR structures, the reflectance and sheet resistance were 87.9% and 35 Ω/• with 4 periods ITO bilayers.
Finally, the SCCO2 treatments with strong oxidizer H2O2 were proposed to modify surface property of ITO anode of a fluorescent OLED. The highest work function and surface energy of 5.5 eV and 74.8 mJ/m2 was achieved by the SCCO2/H2O2 treatment. For the OLED with 15 min SCCO2 treatment at 4000 psi, the turn-on voltage and maximum power efficiency of 6.5 V and 1.94 lm/W were obtained. The power efficiency was 19.3% and 33.8% higher than those of the OLEDs with oxygen plasma treated and as-cleaned ITO anodes.
目次 Table of Contents
摘要 i
Abstract iii
Figure Captions vii
Table Captions x
Chapter I
Introduction
1.1 Supercritical fluid technology 1
1.2 General background 2
1.2.1 Transparent conductive oxides (TCO) 2
1.2.2 Electronic paper 2
1.2.3 Anti-reflection and high-reflection coatings 3
1.2.4 Organic light-emitting diodes (OLED) 4
1.3 Dissertation overview 5
1.4 References 10
Chapter II
Porous ATO cathodes formed by supercritical CO2 treatment at low temperature for silver electro-deposition
2.1 Introduction 12
2.2 Experimental 15
2.3 Results and discussion 15
2.5 References 27
Chapter III
Anti- and high- reflection ITO electrodes fabricated at low temperature
3.1 Introduction 30
3.1.1 Anti-reflection coating 30
3.1.2 High-reflection coating 33
3.2 Experimental 36
3.3 Results and discussion 37
3.3.1 Anti-reflection coating 37
3.3.2 High-reflection coating 42
3.5 References 58
Chapter IV
Low-cost supercritical CO2/H2O2 treatment on ITO anode of fluorescent organic light-emitting diodes
4.1 Introduction 63
4.2 Experimental 66
4.3 Results and discussion 67
4.5 References 81
Chapter V
Conclusion 83
參考文獻 References
Chapter I
[1] Kobe.steel.LTD
[2] Mchard, J. and S.P. Sawan,"Supercritical Fluid Cleaning- Fundamentals, Technology and Applications", William Andrew Publishing/Noyes (1998).
[3] K. Saga, H. Kuniyasu, T. Hattori, K. Saito, I. Mizobata, T. Iwata, and S. Hirae, Solid State Phenomena 134 ,355 (2008).
[4] S. Reddy Puniredd, S. Weiyi, M. P. Srinivasan, J. Colloid Interf. Sci. 320, 333 (2008).
[5] J. M. Blackburn, D. P. Long, A. Cabanas, J. J. Watkins, Science 294, 141 (2001).
[6] K. Baedeker, Ann. Phys. (Leipzig) 22, 749 (1907).
[7] F. Kurdesau, G. Khripunov, A.F. da Cunha, M. Kaelin, A.N. Tiwari, J. Non-Cryst. Solids 352, 1466 (2006)
[8] M. Yamaguchi, A. Ide-Ektessabi, H. Nomura, N. Yasui, Thin Solid Films 115, 447 (2004).
[9] V. Craciun, D. Craciun, X. Wang, T.J. Anderson, R.K. Singh, Thin Solid Films 256, 453 (2004).
[10] T.J. Vink, W. Walrave, J.L.C. Daams, P.C. Baarslag, J.E.A.M. van den Meerakker, Thin Solid Films 266, 145 (1995).
[11] I.A. Rauf, J. Appl, Phys. 79, 4057 (1996).
[12] Nicholas K. Sheridon/TFOT
[13] Frank L. Pedrotti, S.J. Leno S. Pedrotti, Leno M. Pedrotti, Introduction to Optics, Third Edition.
[14] M. Stolka, Consultant, Organic Light Emitting Diodes (OLEDs) for General Illumination, Washington, DC (2002).
Chapter II
[1] C. C. Hu, C. M. Huang, and K. H. Chang, J. Power Sources 185, 1594 (2008).
[2] S. Cherevko, C. H. Chung, Talanta 80, 1371 (2010).
[3] H. Tsuchiya, P. Schmuki, Electrochem. Commun. 7, 49 (2005).
[4] D. S. Liu, T. W. Lin, B. W. Huang, F. S. Juang, P. H. Lei, and C. Z. Hu, Appl. Phys. Lett. 94, 143502 (2009).
[5] H. Lin, T, Jin, A, Dmytruk, M, Saito, and T, Yazawa, J. Photochem. Photobiol., A 164, 173 (2004).
[6] F. K. Allah, S. Y. Abe′, C. M. Nu′n˜ez , A. Khelil, L. Cattin, M. Morsli, J. C. Berne`de, A. Bougrine, M. A. del Valle, and F. R. Dı′az, Appl. Surf. Sci. 253, 9241 (2007).
[7] X. H. Xia, J. P. Tua, J. Zhang, X. L. Wang, W. K. Zhang, and H. Huang, Sol. Energy Mater. Sol. Cells 92, 628 (2008).
[8] N. Kokeguchi, T. Hakii, and K. Hashimoto, SID08 Digest 39, 1022 (2008).
[9] R. Hayes, B. J. Feenstra, Nature 425, 384 (2003).
[10] Y. Chen, J. Au, P. Kazlas, A. Ritenour, H. Gates, and M. McCreary, Nature 423, 136 (2003).
[11] J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, Adv. Mater. 20, 801 (2008).
[12] N. G. Park, K. M. Kim, M. G. Kang, K. S. Ryu, S. H. Chang, and Y. J. Shin, Adv. Mater. 17, 2349 (2005).
[13] Z. Tebby, T. Uddin, Y. Nicolas, C. Olivier, T. Toupance, C. Labrugere, and L. Hirsch, ACS Appl. Mater. Interfaces 3, 1485 (2011).
[14] T. Yamaguchi, N. Tobe, D. Matsumoto, and H. Arakawa, Chem. Commun. 4767 (2007).
[15] B. Pal, M. Sharon, Mater. Chem. Phys. 76, 82 (2002).
[16] S. P. Nalawade, F. Picchioni, and L. P. B. M. Janssen, Chem. Eng. Sci. 62, 1712 (2007).
[17] K. M. Dooley, A. W. Cain, and F. C. Knopf, J. Supercrit. Fluids 11, 81 (1997).
[18] Z. W. Wang, T. J. Wang, Z. W. Wang, and Y. Jin, J. Supercrit. Fluids 37, 125 (2006).
[19] T. D. N. Phan, H. D. Pham, S. Kim, E. S. Oh, E. J. Kim, and E. W. Shin, J. Ind. Eng. Chem. 16, 823 (2010).
[20] S. P. Nalawade, F. Picchioni, and L. P. B. M. Janssen, Prog. Polym. Sci. 31, 19 (2006).
[21] C. Goebbert, R. Nonninger, M. A. Aegerter, and H. Schmidt, Thin Solid Films 351, 79 (1999).
[22] K. H. H. Peter, T. D. Stephen, H. F. Richard, and T. Nir, Science 285, 233 (1999).
[23] J. W. Leem, J. S. Yu, Mater. Sci. Eng., B 176, 1207 (2011).
[24] M. I. Mendelson, J. Am. Ceram. Soc. 52, 443 (1969).
[25] C. Vel′asquez, F. Rojas, M. LOjeda, AOrtiz, and A. Campero, Nanotechnology 16, 1278 (2005).
[26] T. V. Tran, S. Turre, M. Eddafi, B. Capoen, M. Bouazaoui, P. Roussel, S. Berneschi, G. Righini, M. Ferrari, S. N. B. Bhaktha, O. Cristini, and C. Kinowski, J. Mol. Struct. 976, 314 (2010).
[27] D. Chen, L. Gao, J. Colloid Interface Sci. 279, 137 (2004).
[28] M. A. Gondal, Q.A. Drmosh, and T.A. Saleh, Appl. Surf. Sci. 256, 7067 (2010).
[29] L. M. Fang, X. T. Zu, Z. J. Li, S. Zhu, C. M. Liu, W. L. Zhou, and L. M. Wang, J. Alloys Compd. 454, 261 (2008).
[30] H. J. Stocker, L. G. Van Uitert, T. C. Loomis, and F. B. Koch, J. Electrochem. Soc. 128, 4, 746 (1981).
Chapter III
[1] S. Y. Lien, D. S. Wuu, W. C. Yeh, and J. C. Liu, Sol. Energy Mater. Sol. Cells 90, 2710 (2006).
[2] M. Cid, N. Stem, C. Brunetti, A. F. Beloto, and C. A. S. Ramos, Surf. Coat. Technol. 106, 117 (1998).
[3] Z. Chen, P. Sana, J. Salami, and Rohatgi, IEEE Trans. Electr. Dev 40(6), 1161 (1993).
[4] C. Martinet , V. Paillard, and A. Gagnaire, J. Joseph, J. Non-Cryst. Solids 216, 77 (1997).
[5] C. E. Valdivia, E. Desfonds , D. Masson , S. Fafard , A. Carlson , J. Cook , T. J. Hall, and K. Hinzer, International Conference on Applications of Photonic Technology 7099, 09915 (2007).
[6] F. Duerinckx, J. Szlufcik, Sol. Energy Mater. Sol. Cells 72, 231 (2002).
[7] W. Wolke, A. Jäckle, R. Preu, S. Wieder, and M. Ruske, 19th European Photovoltaic Solar Energy Conference 419 (2004).
[8] D. S. Liu, T. W. Lin, B. W. Huang, F. S. Juang, P. H. Lei,and C. Z. Hu, Appl. Phys. Lett. 94, 1435021 (2009).
[9] M. L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S. Y. Lin, Opt. Lett. 33 (21), 2527 (2008).
[10] J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, Adv. Mater. 20, 801 (2008).
[11] X. H. Xia, J. P. Tu, J. Zhang, X. L. Wang, W. K. Zhang, and H. Huang, Sol. Energy Mater. Sol. Cells 92, 628 (2008).
[12] F. D. Mai, W. L. W. Lee, J. L. Chang, S. C. Liu, C. W. Wu, and C. C. Chen, J. Hazard. Mater. 177, 864 (2010).
[13] F. K. Allah, S. Y. Abe′, C. M. Nu′n˜ez , A. Khelil, L. Cattin, M. Morsli, J. C. Berne`de, A. Bougrine, M. A. del Valle, and F. R. Dı′az, Appl. Surf. Sci. 253, 9241(2007).
[14] B. Pal, M. Sharon, Mater. Chem. Phys. 76, 82 (2002).
[15] H. Ryu, J. Kang, Y. Han, D. Kim, J. J. Pak, W. K. Park, and M. S. Yang, J. Electron. Mater. 32(9), 919 (2003).
[16] M. J. Chuang, H. F. Huang, C. H. Wen, and A. K. Chu, Thin Solid Films 518, 2290 (2010).
[17] R. V. Joshi, S. Brodsky, Appl. Phys. Lett. 61, 2613 (1992).
[18] T. D. N. Phan, H. D. Pham, S. Kim, E. S. Oh, E. J. Kim, and E. W. Shin, J. Ind. Eng. Chem. 16, 823 (2010).
[19] S. Boujday, F. Wunsch, P. Portes, J. F. Bocqueta, and C. C. Justin, Sol. Energy Mater. Sol. Cells 83, 421 (2004).
[20] Y. Wan, J. Ma, W. Zhou, Y. Zhu, X. Song, and H. Li, Appl. Catal., A 277, 55 (2004).
[21] J. Yoon, W, Lee, and E. L. Thomas, Nano Lett. 6(10), 2211 (2006).
[22] W. Joo, H. J. Kim, and J. K. Kim, Langmuir 26(7), 5110 (2010).
[23] D. Mangaiyarkarasi, M. B. H. Breese, and Y. S. Ow, Appl. Phys. Lett. 93(22), 221905 (2008).
[24] C. C. Lin and C. T. Lee, IEEE Photon. Technol. Lett. 22(17), 1291 (2010).
[25] J. Potfajova, B. Schmidt, M. Helm, T. Gemming, M. Benyoucef, A. Rastelli, and O. G. Schmidt, Appl. Phys. Lett. 96, 151113 (2010).
[26] L. Zeng, P. Bermel, Y. Yi, B. A. Alamariu, K. A. Broderick, J. Liu,1 C. Hong, X. Duan,1 J. Joannopoulos, and L. C. Kimerling, Appl. Phys. Lett. 93, 221105 (2008).
[27] R. R. Lunt, and V. Bulovic, Appl. Phys. Lett. 98, 113305 (2011).
[28] T. C. Lu, S. W. Chen, T. T. Wu, P. M. Tu, C. K. Chen, C. H. Chen, Z. Y. Li, H. C. Kuo, and S. C. Wang, Appl. Phys. Lett. 97, 071114 (2010).
[29] T. Wunderer, J. E. Northrup, Z. Yang, M. Teepe, A. Strittmatter, N. M. Johnson, P. Rotella, and M. Wraback, Appl. Phys. Lett. 99, 201109 (2011).
[30] I. J. Fritz, J. F. Klem, and J. R. Wendt, Appl. Phys. Lett. 57(7), 753 (1991).
[31] R. L. Thornton, R. D. Burnham, and W. Streifer, Appl. Phys. Lett. 45(10),1028 (1984).
[32] T. C. Lu, T. T. Kao, C. C. Kao, J. T. Chu, K. F. Yeh, L. F. Lin, Y. C. Peng, H. W. Huang, H. C. Kuo, and S. C. Wang, IEEE Electron Dev. Lett. 28(10), 884 (2007).
[33] M. F. Schubert, J.-Q. Xi, J. K. Kim, and E. F. Schubert, Appl. Phys. Lett. 90, 141115 (2007).
[34] P. G. O’Brien, D. P. Puzzo, A. Chutinan, L. D. Bonifacio, G. A. Ozin, and N. P. Kherani, Adv. Mater. 22, 611 (2010).
[35] M. J. Chuang, H. F. Huang, C. H. Wen, and A. K. Chu, Thin Solid Films 518, 2290 ( 2010).
[36] T. D. N. Phan, H. D. Pham, S. Kim, E. S. Oh, E. J. Kim, and E. W. Shin, J. Ind. Eng. Chem. 16, 823 (2010).
[37] S. Boujday, F. Wunsch, P. Portes, J. F. Bocqueta, and C. C. Justin, Sol. Energy Mater. Sol. Cells 83, 421 (2004).
[38] Y. Wan, J. Ma, W. Zhou, Y. Zhu, X. Song, and H. Li, Appl. Catal., A 277, 55 (2004).
[39] U. Kopcak, R. S. Mohamed, J. of Supercritical Fluids 34, 209 (2005).
[40] J. Zhang, S. Burrows, C. Gleason, M. A. Matthews, M. J. Drews, M. LaBerge, and Y. H. An, J. Microbiol. Methods 66, 479 (2006).
[41] W. C. Tien, A. K. Chu, Sol. Energy Mater. Sol. Cells 100, 258 (2012).
[42] B. S. Chiou, J. H. Tsai, J. Mater. Sci. Mater. Electron 10, 491 (1999).
[43] W. F. Wu, B. S. Chiou, and S. T. Hsieh, Semicond. Scl. Technol. 9, 1242 (1994).
[44] J. Lee, H. Jung, J. Lee, D. Lim, K. Yang, J. Yi, and W. C. Song, Thin Solid Films 516, 1634 (2008).
[45] Y. Hoshi, R. Ohki, Electrochim. Acta 44, 3927 (1999).
[46] M. F. Schubert, J.-Q. Xi, J. K. Kim, and E. F. Schubert, Appl. Phys. Lett. 90, 141115 (2007).
[47] B.S. Richards, Sol. Energy Mater. Sol. Cells 79, 369 (2003).
[48] Y. Hoshi, R. Ohki, Electrochim. Acta 44, 3927 (1999).
[49] J. Lee, H. Jung, J. Lee, D. Lim, K. Yang, J. Yi, and W. C. Song, Thin Solid Films 516, 1634 (2008).
Chapter IV
[1] J. Kido, M. Kimura, K. Nagai, Science 267, 1332 (1995).
[2] M. A. Baldo, D. F. OBrien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Nature (London) 396, 151 (1998).
[3] C. W. Tang, S. A. VanSlyke. Appl. Phys. Lett. 51, 913 (1987).
[4] M. G. Mason, L. S. Hung, and C. W. Tang, S. T. Lee, K. W. Wong, M. Wang, J. Appl. Phys. 86, 1688 (1999).
[5] J. S. Kim, M. Granstrom, R. H. Friend, N. Johansson, W. R. Salaneck, R. Daik and W. J. Feast, F. Cacialli, J. Appl. Phys. 84, 6859 (1998).
[6] D. J. Milliron, I. G. Hill, C. Shen, A. Kahn, and J. Schwartz, J. Appl. Phys. 87, 572 (2000).
[7] I. M. Chan, F. C. N. Hong, Thin Solid Films 444, 254 (2003).
[8] J. S. Kim, R. H. Friend, and F. Cacialli, J. Appl. Phys. 86(5), 2774 (1999).
[9] J. S. Kim, M. Granstro‥m, R. H. Friend, N. Johansson, W. R. Salaneck, R. Daik, W. J. Feast, F. Cacialli, J. Appl. Phys. 84(12), 6859 (1998).
[10] J. A. Chaney, S. E. Koh, C. S. Dulcey, P. E. Pehrsson, Appl. Surf. Sci. 218, 258 (2003).
[11] M. R. Ayers, A. J. Hunt, Mater. Lett. 34, 290 (1998).
[12] F. Somma, A. Puppinato, G. Strukul, Appl. Catal., A 309, 115 (2006).
[13] K. X. Ma, C. H. Ho, F. Zhu, T. S. Chung, Thin Solid Films 371, 140 (2000).
[14] L. S. Hung, C. W. Tang, M. G. Mason, Appl. Phys. Lett. 70(2), 152 (1997).
[15] S. M. Park, K. Ebihara, T. Ikegami, B. J. Lee, K. B. Lim, P. K. Shin, Curr. Appl. Phys. 7, 474 (2007).
[16] F. Nuesch, L. J. Rothberg, E. W. Forsythe, Q. T. Le, Y. Gao, Appl. Phys. Lett. 74(6), 880 (1999).
[17] S. A. Nolen, J. Lu, J. S. Brown, P. Pollet, B. C. Eason, K. N. Griffith, R. Glaser, D. Bush, D. R. Lamb, C. L. Liotta, C. A. Eckert, G. F. Thiele and K. A. Bartels, Ind. Eng. Chem. Res. 41, 316 (2002).
[18] Z. H. Huang, X. T. Zeng, X. Y. Sun, E. T. Kang, J. Y. H. Fuh, L. Lu, Org. Electron. 9, 51 (2008).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code